Prediction of major liver-related events in the population using prognostic models.

IF 3.8 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Gastroenterology Report Pub Date : 2025-03-14 eCollection Date: 2025-01-01 DOI:10.1093/gastro/goaf028
Fredrik Åberg, Ville Männistö
{"title":"Prediction of major liver-related events in the population using prognostic models.","authors":"Fredrik Åberg, Ville Männistö","doi":"10.1093/gastro/goaf028","DOIUrl":null,"url":null,"abstract":"<p><p>Liver disease poses a significant global health burden, with steatotic liver disease related to metabolic dysfunction and/or alcohol use being the most prevalent type. Current risk stratification strategies emphasize detecting advanced fibrosis as a surrogate marker for liver-related events (LREs), such as hospitalization, liver cancer, or death. However, fibrosis alone does not adequately predict imminent outcomes, particularly in fast-progressing individuals without advanced fibrosis at evaluation. This underscores the need for models designed specifically to predict LREs, enabling timely interventions. The Chronic Liver Disease (CLivD) risk score, the dynamic aspartate aminotransferase-to-alanine aminotransferase ratio (dAAR), and the Cirrhosis Outcome Risk Estimator (CORE) were explicitly developed to predict LRE risk rather than detect fibrosis. Derived from general population cohorts, these models incorporate either standard liver enzymes (dAAR and CORE) or risk factors (CLivD), enabling broad application in primary care and population-based settings. They directly estimate the risk of future LREs, improving on traditional fibrosis-focused approaches. Conversely, widely used models like the Fibrosis-4 index and newer ones, such as the LiverRisk and LiverPRO scores, were initially developed to detect significant/advanced fibrosis or liver stiffness. While not designed for LRE prediction, they have later been analyzed for this purpose. Integrating fibrosis screening with LRE-focused models like CLivD, dAAR, and CORE can help healthcare systems adopt proactive, preventive care. This approach emphasizes identifying individuals at imminent risk of severe outcomes, potentially ensuring better resource allocation and personalized interventions.</p>","PeriodicalId":54275,"journal":{"name":"Gastroenterology Report","volume":"13 ","pages":"goaf028"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology Report","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/gastro/goaf028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Liver disease poses a significant global health burden, with steatotic liver disease related to metabolic dysfunction and/or alcohol use being the most prevalent type. Current risk stratification strategies emphasize detecting advanced fibrosis as a surrogate marker for liver-related events (LREs), such as hospitalization, liver cancer, or death. However, fibrosis alone does not adequately predict imminent outcomes, particularly in fast-progressing individuals without advanced fibrosis at evaluation. This underscores the need for models designed specifically to predict LREs, enabling timely interventions. The Chronic Liver Disease (CLivD) risk score, the dynamic aspartate aminotransferase-to-alanine aminotransferase ratio (dAAR), and the Cirrhosis Outcome Risk Estimator (CORE) were explicitly developed to predict LRE risk rather than detect fibrosis. Derived from general population cohorts, these models incorporate either standard liver enzymes (dAAR and CORE) or risk factors (CLivD), enabling broad application in primary care and population-based settings. They directly estimate the risk of future LREs, improving on traditional fibrosis-focused approaches. Conversely, widely used models like the Fibrosis-4 index and newer ones, such as the LiverRisk and LiverPRO scores, were initially developed to detect significant/advanced fibrosis or liver stiffness. While not designed for LRE prediction, they have later been analyzed for this purpose. Integrating fibrosis screening with LRE-focused models like CLivD, dAAR, and CORE can help healthcare systems adopt proactive, preventive care. This approach emphasizes identifying individuals at imminent risk of severe outcomes, potentially ensuring better resource allocation and personalized interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gastroenterology Report
Gastroenterology Report Medicine-Gastroenterology
CiteScore
4.60
自引率
2.80%
发文量
63
审稿时长
8 weeks
期刊介绍: Gastroenterology Report is an international fully open access (OA) online only journal, covering all areas related to gastrointestinal sciences, including studies of the alimentary tract, liver, biliary, pancreas, enteral nutrition and related fields. The journal aims to publish high quality research articles on both basic and clinical gastroenterology, authoritative reviews that bring together new advances in the field, as well as commentaries and highlight pieces that provide expert analysis of topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信