Understanding xylose transport in yeasts.

4区 医学 Q3 Biochemistry, Genetics and Molecular Biology
Vitamins and Hormones Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI:10.1016/bs.vh.2024.10.005
Atrayee Chattopadhyay, Mohor Mitra, Mrinal K Maiti
{"title":"Understanding xylose transport in yeasts.","authors":"Atrayee Chattopadhyay, Mohor Mitra, Mrinal K Maiti","doi":"10.1016/bs.vh.2024.10.005","DOIUrl":null,"url":null,"abstract":"<p><p>Xylose constitutes the second major sugar fraction of the plant-derived lignocellulosic biomass, which is the most abundantly available and renewable feedstock for microbial fermentations. Hence, comprehensive utilization of xylose is crucial from the perspective of sustainable development of bio-based products, such as fuels, fine chemicals, and high-value compounds. Due to several inherent advantages, various species and strains of yeast are employed to produce these biomolecules. With the advancement of genetic engineering in yeast, lignocellulosic biomass has begun to be commercialized for producing various bioproducts required in the food, fuel, pharmaceutical, chemical, and cosmetics industries. The increasing demands of these bioproducts worldwide lead to a necessity of utilizing xylose efficiently for yeast fermentation strategies together with/replacing glucose for more economic sustainability. However, yeast fermentation processes mostly employ glucose; hence, our understanding of xylose utilization by yeast has not been as scrupulous as it should have been. There has been a remarkable increase in the number of studies conducted on xylose utilization and metabolism in yeasts in the past decade. Our objective in this chapter is to highlight the key advancements and novel approaches in this area and to integrate our understanding of xylose metabolism in yeasts, which can help culminate into commercializing strategies in the future for the development of important bioproducts.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"128 ","pages":"243-301"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamins and Hormones","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.vh.2024.10.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Xylose constitutes the second major sugar fraction of the plant-derived lignocellulosic biomass, which is the most abundantly available and renewable feedstock for microbial fermentations. Hence, comprehensive utilization of xylose is crucial from the perspective of sustainable development of bio-based products, such as fuels, fine chemicals, and high-value compounds. Due to several inherent advantages, various species and strains of yeast are employed to produce these biomolecules. With the advancement of genetic engineering in yeast, lignocellulosic biomass has begun to be commercialized for producing various bioproducts required in the food, fuel, pharmaceutical, chemical, and cosmetics industries. The increasing demands of these bioproducts worldwide lead to a necessity of utilizing xylose efficiently for yeast fermentation strategies together with/replacing glucose for more economic sustainability. However, yeast fermentation processes mostly employ glucose; hence, our understanding of xylose utilization by yeast has not been as scrupulous as it should have been. There has been a remarkable increase in the number of studies conducted on xylose utilization and metabolism in yeasts in the past decade. Our objective in this chapter is to highlight the key advancements and novel approaches in this area and to integrate our understanding of xylose metabolism in yeasts, which can help culminate into commercializing strategies in the future for the development of important bioproducts.

了解木糖在酵母中的运输。
木糖是植物来源的木质纤维素生物质的第二大糖组分,是微生物发酵最丰富的可再生原料。因此,从燃料、精细化工、高价值化合物等生物基产品可持续发展的角度来看,木糖的综合利用至关重要。由于一些固有的优势,各种种类和菌株的酵母被用来生产这些生物分子。随着酵母基因工程技术的进步,木质纤维素生物质已经开始商业化,用于生产食品、燃料、制药、化工和化妆品等行业所需的各种生物产品。随着世界范围内对这些生物制品的需求不断增加,为了更经济的可持续性,有必要有效地利用木糖和葡萄糖一起用于酵母发酵策略。然而,酵母发酵过程主要使用葡萄糖;因此,我们对酵母利用木糖的了解并没有像它应该的那样严谨。近十年来,对酵母菌木糖利用和代谢的研究有了显著的增加。我们在本章的目标是强调这一领域的关键进展和新方法,并整合我们对酵母木糖代谢的理解,这有助于在未来开发重要生物制品的商业化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vitamins and Hormones
Vitamins and Hormones 医学-内分泌学与代谢
CiteScore
3.80
自引率
0.00%
发文量
66
审稿时长
6-12 weeks
期刊介绍: First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. In the early days of the serial, the subjects of vitamins and hormones were quite distinct. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms. Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信