Optimizing Extracellular Vesicle Delivery Using a Core-Sheath 3D-Bioprinted Scaffold for Chronic Wound Management.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Saeid Vakilian, Fatemeh Jamshidi-Adegani, Fahad Al-Fahdi, Juhaina Al-Kindi, Ahmed Al-Harrasi, Sulaiman Al-Hashmi
{"title":"Optimizing Extracellular Vesicle Delivery Using a Core-Sheath 3D-Bioprinted Scaffold for Chronic Wound Management.","authors":"Saeid Vakilian, Fatemeh Jamshidi-Adegani, Fahad Al-Fahdi, Juhaina Al-Kindi, Ahmed Al-Harrasi, Sulaiman Al-Hashmi","doi":"10.3791/67764","DOIUrl":null,"url":null,"abstract":"<p><p>This study outlines a detailed protocol for the fabrication of core-sheath 3D-bioprinted scaffolds designed to enhance chronic wound healing. The protocol involves isolating extracellular vesicles (EVs) from mesenchymal stem cells (MSCs), known for their regenerative and immunomodulatory properties. These EVs are then incorporated into a unique scaffold structure. The scaffold features a core composed of alginate loaded with EVs, surrounded by a sheath made of carboxymethyl cellulose and alginate lyase. This innovative design ensures controlled scaffold degradation while promoting efficient and controlled release of EVs at the wound site. The protocol covers key steps, including the preparation and characterization of the EVs, the formulation of bio-inks for 3D bioprinting, and the optimization of printing parameters to achieve the desired core-sheath architecture. By combining structural integrity and bioactivity, the scaffold aims to address the limitations of conventional wound dressings, offering a targeted approach to accelerate tissue regeneration and reduce inflammation in chronic wounds. This method provides a reproducible and scalable strategy for developing advanced biomaterials with potential clinical applications in chronic wound management. The protocol also highlights critical considerations for achieving consistent results, ensuring adaptability for future therapeutic applications.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67764","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study outlines a detailed protocol for the fabrication of core-sheath 3D-bioprinted scaffolds designed to enhance chronic wound healing. The protocol involves isolating extracellular vesicles (EVs) from mesenchymal stem cells (MSCs), known for their regenerative and immunomodulatory properties. These EVs are then incorporated into a unique scaffold structure. The scaffold features a core composed of alginate loaded with EVs, surrounded by a sheath made of carboxymethyl cellulose and alginate lyase. This innovative design ensures controlled scaffold degradation while promoting efficient and controlled release of EVs at the wound site. The protocol covers key steps, including the preparation and characterization of the EVs, the formulation of bio-inks for 3D bioprinting, and the optimization of printing parameters to achieve the desired core-sheath architecture. By combining structural integrity and bioactivity, the scaffold aims to address the limitations of conventional wound dressings, offering a targeted approach to accelerate tissue regeneration and reduce inflammation in chronic wounds. This method provides a reproducible and scalable strategy for developing advanced biomaterials with potential clinical applications in chronic wound management. The protocol also highlights critical considerations for achieving consistent results, ensuring adaptability for future therapeutic applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信