Efficacy of anti-LAG3 and anti-PD-1 combination checkpoint inhibitor therapy against head and neck squamous cell carcinoma in a genetically engineered mouse model.
Felipe F Lamenza, Peyton Roth, Puja Upadhaya, Suvekshya Shrestha, Sushmitha Jagadeesha, Natalie Kazmierowicz, Natalie Horn, Hasan Pracha, Sonali Dasari, Steve Oghumu
{"title":"Efficacy of anti-LAG3 and anti-PD-1 combination checkpoint inhibitor therapy against head and neck squamous cell carcinoma in a genetically engineered mouse model.","authors":"Felipe F Lamenza, Peyton Roth, Puja Upadhaya, Suvekshya Shrestha, Sushmitha Jagadeesha, Natalie Kazmierowicz, Natalie Horn, Hasan Pracha, Sonali Dasari, Steve Oghumu","doi":"10.1080/2162402X.2025.2477872","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) continues to be among the most common malignancies worldwide with limited treatment options for patients. Targeting the PD-1/PDL-1 axis is currently the only FDA approved immune checkpoint inhibitor treatment for HNSCC. Novel therapies targeting other pathways are needed along with testing a combinational approach to find new and more efficient ways to treat this disease. We utilized a tamoxifen inducible <i>TgfβR1/Pten</i> deletion mouse model to explore the efficacy of combined anti-LAG-3 and anti-PD-1 therapy against tongue HNSCC and determine underlying immunological mechanisms. Combined anti-LAG-3/anti-PD-1 therapy was effective at decreasing the tumor burden and lymphatic metastasis compared to anti-LAG-3 treatment but not when compared to the anti-PD-1 treatment alone. Anti-tumoral effects of anti-PD1 and anti-LAG-3/anti-PD-1 combined therapy were associated with increased CD4+ and CD8+ T-cell proliferative responses in secondary lymphoid organs along with increased CD8+ T-cell tumor infiltration. Anti-LAG-3 treatment potentiated the anti-tumoral properties of CD4+ T-cells treated with anti-PD-1, including enhanced systemic IFN-γ production and TNF-α production in the tumor microenvironment. Further, anti-tumoral cytotoxic CD8+ T-cell effector function and granzyme B production were enhanced by anti-PD-1 and combinatorial anti-LAG-3/anti-PD-1 immunotherapy, resulting in greater tumor cell death. Our results demonstrate that anti-LAG-3 has the potential to enhance the efficacy of anti-PD-1 therapy; however, humanized mouse models that better recapitulate the human disease with FDA approved antibodies are needed to further characterize the efficacy of this treatment as a viable treatment option for HNSCC patients.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2477872"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2025.2477872","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Head and neck squamous cell carcinoma (HNSCC) continues to be among the most common malignancies worldwide with limited treatment options for patients. Targeting the PD-1/PDL-1 axis is currently the only FDA approved immune checkpoint inhibitor treatment for HNSCC. Novel therapies targeting other pathways are needed along with testing a combinational approach to find new and more efficient ways to treat this disease. We utilized a tamoxifen inducible TgfβR1/Pten deletion mouse model to explore the efficacy of combined anti-LAG-3 and anti-PD-1 therapy against tongue HNSCC and determine underlying immunological mechanisms. Combined anti-LAG-3/anti-PD-1 therapy was effective at decreasing the tumor burden and lymphatic metastasis compared to anti-LAG-3 treatment but not when compared to the anti-PD-1 treatment alone. Anti-tumoral effects of anti-PD1 and anti-LAG-3/anti-PD-1 combined therapy were associated with increased CD4+ and CD8+ T-cell proliferative responses in secondary lymphoid organs along with increased CD8+ T-cell tumor infiltration. Anti-LAG-3 treatment potentiated the anti-tumoral properties of CD4+ T-cells treated with anti-PD-1, including enhanced systemic IFN-γ production and TNF-α production in the tumor microenvironment. Further, anti-tumoral cytotoxic CD8+ T-cell effector function and granzyme B production were enhanced by anti-PD-1 and combinatorial anti-LAG-3/anti-PD-1 immunotherapy, resulting in greater tumor cell death. Our results demonstrate that anti-LAG-3 has the potential to enhance the efficacy of anti-PD-1 therapy; however, humanized mouse models that better recapitulate the human disease with FDA approved antibodies are needed to further characterize the efficacy of this treatment as a viable treatment option for HNSCC patients.
期刊介绍:
OncoImmunology is a dynamic, high-profile, open access journal that comprehensively covers tumor immunology and immunotherapy.
As cancer immunotherapy advances, OncoImmunology is committed to publishing top-tier research encompassing all facets of basic and applied tumor immunology.
The journal covers a wide range of topics, including:
-Basic and translational studies in immunology of both solid and hematological malignancies
-Inflammation, innate and acquired immune responses against cancer
-Mechanisms of cancer immunoediting and immune evasion
-Modern immunotherapies, including immunomodulators, immune checkpoint inhibitors, T-cell, NK-cell, and macrophage engagers, and CAR T cells
-Immunological effects of conventional anticancer therapies.