Bilateral asymmetry in craniofacial structures and kinematics of feeding attacks in the scale-eating cichlid fish, Perissodus microlepis.

IF 4 1区 生物学 Q1 ZOOLOGY
Xiaomeng Tian, Sooyeon Lee, Jan Tuckermann, Axel Meyer
{"title":"Bilateral asymmetry in craniofacial structures and kinematics of feeding attacks in the scale-eating cichlid fish, <i>Perissodus</i> <i>microlepis</i>.","authors":"Xiaomeng Tian, Sooyeon Lee, Jan Tuckermann, Axel Meyer","doi":"10.24272/j.issn.2095-8137.2024.314","DOIUrl":null,"url":null,"abstract":"<p><p>Cichlid fishes are a textbook example for adaptive radiations, since they diversified into several hundred highly specialized species in each of three great East African lakes. Even scale-eating, an extremely specialized feeding mode, evolved independently multiple times in these radiations and in Lake Tanganyika alone, six endemic scale-eating species occupy this extremely specialized ecological niche. <i>Perissodus</i> <i>microlepis</i> went a step further, by evolving bilaterally asymmetrical heads with an intra-specific polymorphism where left- and right-headed morphs predominantly scrape scales from the opposite sides of their prey. While the bilateral asymmetry of scale-eating cichlids has been known, exactly which craniofacial features explain the laterality of the heads remained unclear. Here we aimed, by utilizing micro-computed tomography (μCT), to resolve this issue of how bilateral symmetry in the skeletal structure is broken in scale-eating <i>Perissodus</i>. Our 3D geometric morphometrics analysis clearly separated and identified the two groups of either left- or right-headed fish. In addition, we observed consistent asymmetric volume changes in the premaxilla, maxilla, and mandible of the craniofacial structures, where left-headed fish have larger jaw elements on the right side, and vice versa. The bimodality implies that the effect sizes of environmental factors might be minor while genetics might be responsible to a larger extent for the asymmetry observed in their head morphology. High-speed video analyses of attacks by asymmetrical morphotypes revealed that they utilize their asymmetrical mouth protrusion, as well as lateralized behavior, to re-orientate the gape towards the preferred side of their prey fish to more efficiently scrape scales.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 2","pages":"370-378"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.314","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cichlid fishes are a textbook example for adaptive radiations, since they diversified into several hundred highly specialized species in each of three great East African lakes. Even scale-eating, an extremely specialized feeding mode, evolved independently multiple times in these radiations and in Lake Tanganyika alone, six endemic scale-eating species occupy this extremely specialized ecological niche. Perissodus microlepis went a step further, by evolving bilaterally asymmetrical heads with an intra-specific polymorphism where left- and right-headed morphs predominantly scrape scales from the opposite sides of their prey. While the bilateral asymmetry of scale-eating cichlids has been known, exactly which craniofacial features explain the laterality of the heads remained unclear. Here we aimed, by utilizing micro-computed tomography (μCT), to resolve this issue of how bilateral symmetry in the skeletal structure is broken in scale-eating Perissodus. Our 3D geometric morphometrics analysis clearly separated and identified the two groups of either left- or right-headed fish. In addition, we observed consistent asymmetric volume changes in the premaxilla, maxilla, and mandible of the craniofacial structures, where left-headed fish have larger jaw elements on the right side, and vice versa. The bimodality implies that the effect sizes of environmental factors might be minor while genetics might be responsible to a larger extent for the asymmetry observed in their head morphology. High-speed video analyses of attacks by asymmetrical morphotypes revealed that they utilize their asymmetrical mouth protrusion, as well as lateralized behavior, to re-orientate the gape towards the preferred side of their prey fish to more efficiently scrape scales.

双侧颅面结构的不对称和食鳞鱼的摄食攻击运动学。
慈鲷是适应性辐射的典型例子,因为它们在东非的三个大湖中都分化成几百个高度专业化的物种。即使是食鳞这种极其特殊的喂养方式,也在这些辐射中独立进化了多次,仅在坦噶尼喀湖,就有六种特有的食鳞物种占据了这种极其特殊的生态位。小鳞鱼更进了一步,它们进化出了双侧不对称的头部,具有一种种内多态性,即左头和右头的变种主要从猎物的对面刮去鳞片。虽然已经知道吃鳞慈鲷的双侧不对称,但究竟是哪种颅面特征解释了头部的偏侧性仍然不清楚。在这里,我们的目的是利用微计算机断层扫描(μCT),解决这一问题,如何在骨骼结构的双边对称性是如何在吃鳞片的Perissodus被打破。我们的三维几何形态计量学分析清楚地区分并确定了两组左头或右头鱼。此外,我们在颅面结构的前颌骨、上颌骨和下颌骨观察到一致的不对称体积变化,其中左头鱼的右侧颌骨较大,反之亦然。这种双峰性表明,环境因素的影响可能较小,而遗传因素可能在更大程度上导致其头部形态的不对称。高速视频分析显示,它们利用不对称的嘴部突出,以及侧化行为,将开口重新定向到猎物的偏好一侧,以更有效地刮去鳞片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信