{"title":"Influence of Step-Width Manipulation on Running Biomechanics.","authors":"Liu Xu, Yuan Wang, Hanhui Jiang, Xiaoyi Yang, Justin Fernandez, Qichang Mei, Yaodong Gu","doi":"10.3791/67152","DOIUrl":null,"url":null,"abstract":"<p><p>Step width is a critical factor influencing lower limb biomechanics during running, significantly affecting stability, performance, and injury risk. Understanding these effects is essential for optimizing running performance and minimizing injury risk. This study evaluated the effects of varying step widths on lower limb biomechanics at different running speeds. Thirteen healthy Chinese males (aged 20-24) participated in the study, running at speeds of 3.0 m/s and 3.7 m/s using six distinct step widths: the preferred step width and five variations (reductions of 13% and 6.5%, and increases of 6.5%, 13%, and 25%, based on leg length). Data were collected using a motion capture system and force plates and analyzed through repeated measures ANOVA and correlation tests. The results indicated that wider step widths significantly reduced peak knee abduction moments and hip adduction angles, whereas narrower step widths increased knee joint loading. These findings have important implications for clinicians and runners, suggesting that careful step width selection can help reduce injury risk and enhance running efficiency. This study contributes a new dataset that lays the foundation for future research into the relationship between step width and running biomechanics and serves as a reference for training and rehabilitation practices.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67152","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Step width is a critical factor influencing lower limb biomechanics during running, significantly affecting stability, performance, and injury risk. Understanding these effects is essential for optimizing running performance and minimizing injury risk. This study evaluated the effects of varying step widths on lower limb biomechanics at different running speeds. Thirteen healthy Chinese males (aged 20-24) participated in the study, running at speeds of 3.0 m/s and 3.7 m/s using six distinct step widths: the preferred step width and five variations (reductions of 13% and 6.5%, and increases of 6.5%, 13%, and 25%, based on leg length). Data were collected using a motion capture system and force plates and analyzed through repeated measures ANOVA and correlation tests. The results indicated that wider step widths significantly reduced peak knee abduction moments and hip adduction angles, whereas narrower step widths increased knee joint loading. These findings have important implications for clinicians and runners, suggesting that careful step width selection can help reduce injury risk and enhance running efficiency. This study contributes a new dataset that lays the foundation for future research into the relationship between step width and running biomechanics and serves as a reference for training and rehabilitation practices.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.