{"title":"Covalent Fragment Screening Using the Quantitative Irreversible Tethering Assay.","authors":"Charles P Brown, Alan Armstrong, David J Mann","doi":"10.3791/67178","DOIUrl":null,"url":null,"abstract":"<p><p>Compounds that form covalent bonds with specific target proteins offer a variety of advantages as chemical probes and therapeutic agents. Most commonly, mildly reactive, electrophilic small molecules are employed to form covalent bonds with select cysteine side chains in specific proteins. Electrophile-first approaches of ligand discovery, whereby a library of electrophilic small molecules are screened against a protein target, have become popular as they avoid the need for time-consuming downstream installation of an electrophilic warhead. Such screening is complicated, however, as electrophilic ligands can exhibit a wide range of different rates of spontaneous reaction with cysteines. Quantitative-irreversible tethering (qIT) offers a fluorescence-based method for hit identification and development that normalizes data for these differences in intrinsic compound reactivity. Rates of reaction of individual compounds with a target protein are determined and compared to compound reactivity with the unstructured tripeptide glutathione (this being a proxy for spontaneous compound reaction), enabling the identification of compounds that preferentially react with the protein of interest. This methodology has been successfully applied to identify selective covalent fragments against several drug targets, including SARS-CoV-2 main protease, cyclin-dependent kinase 2, and RAP27A. Here, we demonstrate the application of qIT to a target protein to generate a quantitative and robust data set, allowing prioritization of hit ligands for future development.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67178","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Compounds that form covalent bonds with specific target proteins offer a variety of advantages as chemical probes and therapeutic agents. Most commonly, mildly reactive, electrophilic small molecules are employed to form covalent bonds with select cysteine side chains in specific proteins. Electrophile-first approaches of ligand discovery, whereby a library of electrophilic small molecules are screened against a protein target, have become popular as they avoid the need for time-consuming downstream installation of an electrophilic warhead. Such screening is complicated, however, as electrophilic ligands can exhibit a wide range of different rates of spontaneous reaction with cysteines. Quantitative-irreversible tethering (qIT) offers a fluorescence-based method for hit identification and development that normalizes data for these differences in intrinsic compound reactivity. Rates of reaction of individual compounds with a target protein are determined and compared to compound reactivity with the unstructured tripeptide glutathione (this being a proxy for spontaneous compound reaction), enabling the identification of compounds that preferentially react with the protein of interest. This methodology has been successfully applied to identify selective covalent fragments against several drug targets, including SARS-CoV-2 main protease, cyclin-dependent kinase 2, and RAP27A. Here, we demonstrate the application of qIT to a target protein to generate a quantitative and robust data set, allowing prioritization of hit ligands for future development.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.