Impact of age on cardiometabolic health in children at adiposity rebound: the role of genetic mechanisms.

IF 6.1 2区 医学 Q1 PEDIATRICS
Ling Luo, Fang-Biao Tao
{"title":"Impact of age on cardiometabolic health in children at adiposity rebound: the role of genetic mechanisms.","authors":"Ling Luo, Fang-Biao Tao","doi":"10.1007/s12519-025-00893-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Identifying effective predictors early in life is crucial to enable timely prevention and intervention to improve cardiometabolic health outcomes. Adiposity rebound (AR) is an important period in early life, with earlier AR increasing the risk of cardiometabolic abnormalities. However, the role and mechanism of genetic factors in this association are unclear. Therefore, this study reviews the potential genetic mechanisms influencing the age at AR, as well as the genetic mechanisms linking earlier AR with cardiometabolic abnormalities.</p><p><strong>Data sources: </strong>A comprehensive literature search was conducted in PubMed and China National Knowledge Infrastructure databases using a combination of medical subject headings terms and related keywords, including \"adiposity rebound\", \"cardiometabolic\", \"obesity\", \"BMI trajectory\", \"diabetes mellitus\", \"dyslipidemias\", \"hypertension\", \"metabolic syndrome\", \"genetics\", and \"epigenetic\". Citation tracking was performed as a supplementary search strategy. All potentially relevant articles were subsequently subjected to full-text evaluation for eligibility assessment.</p><p><strong>Results: </strong>Polymorphisms in the DMRT1, FTO, LEPR, and TFAP2B genes, along with obesity susceptibility, can influence the age at AR. Single-nucleotide polymorphisms associated with the age at AR are enriched in the insulin-like growth factor 1 (IGF-1) signaling pathway, which can be modulated by the LEPR and TFAP2B genes. Shared genetic mechanisms between cardiometabolic abnormalities and the age at AR are influenced by obesity-related genetic variants. These variants regulate the growth hormone (GH)/IGF-1 axis, advancing AR and leading to cardiometabolic abnormalities. Earlier AR alters adiponectin and leptin levels, further activating the GH/IGF-1 axis and creating a vicious cycle. Long-term breastfeeding can counteract the adverse effects of obesity-related genetic susceptibility on AR timing, thereby reducing the genetic risk of cardiometabolic abnormalities.</p><p><strong>Conclusions: </strong>Our results support earlier AR as a marker for identifying cardiometabolic risk and screening high-risk populations at the genetic level.</p>","PeriodicalId":23883,"journal":{"name":"World Journal of Pediatrics","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Pediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12519-025-00893-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Identifying effective predictors early in life is crucial to enable timely prevention and intervention to improve cardiometabolic health outcomes. Adiposity rebound (AR) is an important period in early life, with earlier AR increasing the risk of cardiometabolic abnormalities. However, the role and mechanism of genetic factors in this association are unclear. Therefore, this study reviews the potential genetic mechanisms influencing the age at AR, as well as the genetic mechanisms linking earlier AR with cardiometabolic abnormalities.

Data sources: A comprehensive literature search was conducted in PubMed and China National Knowledge Infrastructure databases using a combination of medical subject headings terms and related keywords, including "adiposity rebound", "cardiometabolic", "obesity", "BMI trajectory", "diabetes mellitus", "dyslipidemias", "hypertension", "metabolic syndrome", "genetics", and "epigenetic". Citation tracking was performed as a supplementary search strategy. All potentially relevant articles were subsequently subjected to full-text evaluation for eligibility assessment.

Results: Polymorphisms in the DMRT1, FTO, LEPR, and TFAP2B genes, along with obesity susceptibility, can influence the age at AR. Single-nucleotide polymorphisms associated with the age at AR are enriched in the insulin-like growth factor 1 (IGF-1) signaling pathway, which can be modulated by the LEPR and TFAP2B genes. Shared genetic mechanisms between cardiometabolic abnormalities and the age at AR are influenced by obesity-related genetic variants. These variants regulate the growth hormone (GH)/IGF-1 axis, advancing AR and leading to cardiometabolic abnormalities. Earlier AR alters adiponectin and leptin levels, further activating the GH/IGF-1 axis and creating a vicious cycle. Long-term breastfeeding can counteract the adverse effects of obesity-related genetic susceptibility on AR timing, thereby reducing the genetic risk of cardiometabolic abnormalities.

Conclusions: Our results support earlier AR as a marker for identifying cardiometabolic risk and screening high-risk populations at the genetic level.

求助全文
约1分钟内获得全文 求助全文
来源期刊
World Journal of Pediatrics
World Journal of Pediatrics 医学-小儿科
CiteScore
10.50
自引率
1.10%
发文量
592
审稿时长
2.5 months
期刊介绍: The World Journal of Pediatrics, a monthly publication, is dedicated to disseminating peer-reviewed original papers, reviews, and special reports focusing on clinical practice and research in pediatrics. We welcome contributions from pediatricians worldwide on new developments across all areas of pediatrics, including pediatric surgery, preventive healthcare, pharmacology, stomatology, and biomedicine. The journal also covers basic sciences and experimental work, serving as a comprehensive academic platform for the international exchange of medical findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信