Mitochondrial mt12361A>G increased risk of metabolic dysfunction-associated steatotic liver disease among non-diabetes.

IF 4.3 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Ming-Ying Lu, Yu-Ju Wei, Chih-Wen Wang, Po-Cheng Liang, Ming-Lun Yeh, Yi-Shan Tsai, Pei-Chien Tsai, Yu-Min Ko, Ching-Chih Lin, Kuan-Yu Chen, Yi-Hung Lin, Tyng-Yuan Jang, Ming-Yen Hsieh, Zu-Yau Lin, Chung-Feng Huang, Jee-Fu Huang, Chia-Yen Dai, Wan-Long Chuang, Ming-Lung Yu
{"title":"Mitochondrial mt12361A>G increased risk of metabolic dysfunction-associated steatotic liver disease among non-diabetes.","authors":"Ming-Ying Lu, Yu-Ju Wei, Chih-Wen Wang, Po-Cheng Liang, Ming-Lun Yeh, Yi-Shan Tsai, Pei-Chien Tsai, Yu-Min Ko, Ching-Chih Lin, Kuan-Yu Chen, Yi-Hung Lin, Tyng-Yuan Jang, Ming-Yen Hsieh, Zu-Yau Lin, Chung-Feng Huang, Jee-Fu Huang, Chia-Yen Dai, Wan-Long Chuang, Ming-Lung Yu","doi":"10.3748/wjg.v31.i10.103716","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Insulin resistance, lipotoxicity, and mitochondrial dysfunction contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Mitochondrial dysfunction impairs oxidative phosphorylation and increases reactive oxygen species production, leading to steatohepatitis and hepatic fibrosis. Artificial intelligence (AI) is a potent tool for disease diagnosis and risk stratification.</p><p><strong>Aim: </strong>To investigate mitochondrial DNA polymorphisms in susceptibility to MASLD and establish an AI model for MASLD screening.</p><p><strong>Methods: </strong>Multiplex polymerase chain reaction was performed to comprehensively genotype 82 mitochondrial DNA variants in the screening dataset (<i>n</i> = 264). The significant mitochondrial single nucleotide polymorphism was validated in an independent cohort (<i>n</i> = 1046) using the Taqman<sup>®</sup> allelic discrimination assay. Random forest, eXtreme gradient boosting, Naive Bayes, and logistic regression algorithms were employed to construct an AI model for MASLD.</p><p><strong>Results: </strong>In the screening dataset, only mt12361A>G was significantly associated with MASLD. mt12361A>G showed borderline significance in MASLD patients with 2-3 cardiometabolic traits compared with controls in the validation dataset (<i>P</i> = 0.055). Multivariate regression analysis confirmed that mt12361A>G was an independent risk factor of MASLD [odds ratio (OR) = 2.54, 95% confidence interval (CI): 1.19-5.43, <i>P</i> = 0.016]. The genetic effect of mt12361A>G was significant in the non-diabetic group but not in the diabetic group. mt12361G carriers had a 2.8-fold higher risk than A carriers in the non-diabetic group (OR = 2.80, 95%CI: 1.22-6.41, <i>P</i> = 0.015). By integrating clinical features and mt12361A>G, random forest outperformed other algorithms in detecting MASLD [training area under the receiver operating characteristic curve (AUROC) = 1.000, validation AUROC = 0.876].</p><p><strong>Conclusion: </strong>The mt12361A>G variant increased the severity of MASLD in non-diabetic patients. AI supports the screening and management of MASLD in primary care settings.</p>","PeriodicalId":23778,"journal":{"name":"World Journal of Gastroenterology","volume":"31 10","pages":"103716"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3748/wjg.v31.i10.103716","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Insulin resistance, lipotoxicity, and mitochondrial dysfunction contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Mitochondrial dysfunction impairs oxidative phosphorylation and increases reactive oxygen species production, leading to steatohepatitis and hepatic fibrosis. Artificial intelligence (AI) is a potent tool for disease diagnosis and risk stratification.

Aim: To investigate mitochondrial DNA polymorphisms in susceptibility to MASLD and establish an AI model for MASLD screening.

Methods: Multiplex polymerase chain reaction was performed to comprehensively genotype 82 mitochondrial DNA variants in the screening dataset (n = 264). The significant mitochondrial single nucleotide polymorphism was validated in an independent cohort (n = 1046) using the Taqman® allelic discrimination assay. Random forest, eXtreme gradient boosting, Naive Bayes, and logistic regression algorithms were employed to construct an AI model for MASLD.

Results: In the screening dataset, only mt12361A>G was significantly associated with MASLD. mt12361A>G showed borderline significance in MASLD patients with 2-3 cardiometabolic traits compared with controls in the validation dataset (P = 0.055). Multivariate regression analysis confirmed that mt12361A>G was an independent risk factor of MASLD [odds ratio (OR) = 2.54, 95% confidence interval (CI): 1.19-5.43, P = 0.016]. The genetic effect of mt12361A>G was significant in the non-diabetic group but not in the diabetic group. mt12361G carriers had a 2.8-fold higher risk than A carriers in the non-diabetic group (OR = 2.80, 95%CI: 1.22-6.41, P = 0.015). By integrating clinical features and mt12361A>G, random forest outperformed other algorithms in detecting MASLD [training area under the receiver operating characteristic curve (AUROC) = 1.000, validation AUROC = 0.876].

Conclusion: The mt12361A>G variant increased the severity of MASLD in non-diabetic patients. AI supports the screening and management of MASLD in primary care settings.

线粒体mt12361A>G增加非糖尿病患者代谢功能障碍相关脂肪变性肝病的风险
背景:胰岛素抵抗、脂肪毒性和线粒体功能障碍有助于代谢功能障碍相关脂肪变性肝病(MASLD)的发病机制。线粒体功能障碍损害氧化磷酸化并增加活性氧的产生,导致脂肪性肝炎和肝纤维化。人工智能(AI)是疾病诊断和风险分层的有力工具。目的:探讨线粒体DNA多态性与MASLD易感性的关系,建立MASLD筛查的人工智能模型。方法:采用多重聚合酶链反应对筛选数据集中(n = 264)的82个线粒体DNA变异进行综合基因型分析。使用Taqman®等位基因鉴别法,在一个独立队列(n = 1046)中验证了显著的线粒体单核苷酸多态性。采用随机森林、极端梯度增强、朴素贝叶斯和逻辑回归算法构建了MASLD的人工智能模型。结果:在筛选数据集中,只有mt12361A>G与MASLD显著相关。与验证数据集中的对照组相比,mt12361A>G在具有2-3个心脏代谢特征的MASLD患者中具有临界意义(P = 0.055)。多因素回归分析证实mt12361A>G是MASLD的独立危险因素[比值比(OR) = 2.54, 95%可信区间(CI): 1.19 ~ 5.43, P = 0.016]。mt12361A>G的遗传效应在非糖尿病组显著,在糖尿病组不显著。mt12361G携带者的发病风险是非糖尿病组a携带者的2.8倍(OR = 2.80, 95%CI: 1.22 ~ 6.41, P = 0.015)。随机森林通过整合临床特征和mt12361A>G,在检测MASLD[受试者工作特征曲线下的训练区域(AUROC) = 1.000,验证AUROC = 0.876]方面优于其他算法。结论:mt12361A >g变异增加了非糖尿病患者MASLD的严重程度。人工智能支持初级保健机构对MASLD的筛查和管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
World Journal of Gastroenterology
World Journal of Gastroenterology 医学-胃肠肝病学
CiteScore
7.80
自引率
4.70%
发文量
464
审稿时长
2.4 months
期刊介绍: The primary aims of the WJG are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in gastroenterology and hepatology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信