Sequential Clustering Phases for Environmental Noise Level Monitoring on a Mobile Crowd Sourcing/Sensing Platform.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-05 DOI:10.3390/s25051601
Fawaz Alhazemi
{"title":"Sequential Clustering Phases for Environmental Noise Level Monitoring on a Mobile Crowd Sourcing/Sensing Platform.","authors":"Fawaz Alhazemi","doi":"10.3390/s25051601","DOIUrl":null,"url":null,"abstract":"<p><p>Using mobile crowd sourcing/sensing (MCS) noise monitoring can lead to false sound level reporting. The methods used for recruiting mobile phones in an area of interest vary from selecting full populations to randomly selecting a single phone. Other methods apply a clustering algorithm based on spatial or noise parameters to recruit mobile phones to MCS platforms. However, statistical <i>t</i> tests have revealed dissimilarities between these selection methods. In this paper, we assign these dissimilarities to (1) acoustic characteristics and (2) outlier mobile phones affecting the noise level. We propose two clustering phases for noise level monitoring in MCS platforms. The approach starts by applying spatial clustering to form focused clusters and removing spatial outliers. Then, noise level clustering is applied to eliminate noise level outliers. This creates subsets of mobile phones that are used to calculate the noise level. We conducted a real-world experiment with 25 mobile phones and performed a statistical <i>t</i> test evaluation of the selection methodologies. The statistical values indicated dissimilarities. Then, we compared our proposed method with the noise level clustering method in terms of properly detecting and eliminating outliers. Our method offers 4% to 12% higher performance than the noise clustering method.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051601","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using mobile crowd sourcing/sensing (MCS) noise monitoring can lead to false sound level reporting. The methods used for recruiting mobile phones in an area of interest vary from selecting full populations to randomly selecting a single phone. Other methods apply a clustering algorithm based on spatial or noise parameters to recruit mobile phones to MCS platforms. However, statistical t tests have revealed dissimilarities between these selection methods. In this paper, we assign these dissimilarities to (1) acoustic characteristics and (2) outlier mobile phones affecting the noise level. We propose two clustering phases for noise level monitoring in MCS platforms. The approach starts by applying spatial clustering to form focused clusters and removing spatial outliers. Then, noise level clustering is applied to eliminate noise level outliers. This creates subsets of mobile phones that are used to calculate the noise level. We conducted a real-world experiment with 25 mobile phones and performed a statistical t test evaluation of the selection methodologies. The statistical values indicated dissimilarities. Then, we compared our proposed method with the noise level clustering method in terms of properly detecting and eliminating outliers. Our method offers 4% to 12% higher performance than the noise clustering method.

在移动式人群来源/传感平台上进行环境噪声水平监测的顺序聚类阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信