Integration of DSRC, mmWave, and THz Bands in a 6G CR-SDVN.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-04 DOI:10.3390/s25051580
Umair Riaz, Muhammad Rafid, Huma Ghafoor, Insoo Koo
{"title":"Integration of DSRC, mmWave, and THz Bands in a 6G CR-SDVN.","authors":"Umair Riaz, Muhammad Rafid, Huma Ghafoor, Insoo Koo","doi":"10.3390/s25051580","DOIUrl":null,"url":null,"abstract":"<p><p>To meet the growing needs of automobile users, and to provide services on demand with stable and efficient paths across different bands amidst this proliferation of users, an integrated approach to the software-defined vehicular network (SDVN) is proposed in this paper. Due to the significant increase in users, DSRC is already considered insufficient to fulfill modern needs. Hence, to enhance network performance and fulfill the growing needs of users in SDVN environments, we implement cognitive technology by integrating the DSRC, mmWave, and THz bands to find stable paths among different nodes. To manage these different technologies, an SDN controller is employed as the main controller (MC), recording the global state of all nodes within the network. Channel sensing is conducted individually for each technology, and sensing results-representing the number of available bands for secondary communications-are updated periodically in the MC. Consequently, the MC manages connections by switching between DSRC, mmWave, and THz bands, providing stable paths between the source and destination. The switching decision is taken by considering both the distance from the MC and the availability of channels among these three technologies. This cognitive integration of bands in SDVN improves performance in terms of network delay, packet delivery, and overhead ratio.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051580","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the growing needs of automobile users, and to provide services on demand with stable and efficient paths across different bands amidst this proliferation of users, an integrated approach to the software-defined vehicular network (SDVN) is proposed in this paper. Due to the significant increase in users, DSRC is already considered insufficient to fulfill modern needs. Hence, to enhance network performance and fulfill the growing needs of users in SDVN environments, we implement cognitive technology by integrating the DSRC, mmWave, and THz bands to find stable paths among different nodes. To manage these different technologies, an SDN controller is employed as the main controller (MC), recording the global state of all nodes within the network. Channel sensing is conducted individually for each technology, and sensing results-representing the number of available bands for secondary communications-are updated periodically in the MC. Consequently, the MC manages connections by switching between DSRC, mmWave, and THz bands, providing stable paths between the source and destination. The switching decision is taken by considering both the distance from the MC and the availability of channels among these three technologies. This cognitive integration of bands in SDVN improves performance in terms of network delay, packet delivery, and overhead ratio.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信