Integrated Lower Limb Robotic Orthosis with Embedded Highly Oriented Electrospinning Sensors by Fuzzy Logic-Based Gait Phase Detection and Motion Control.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-05 DOI:10.3390/s25051606
Ming-Chan Lee, Cheng-Tang Pan, Jhih-Syuan Huang, Zheng-Yu Hoe, Yeong-Maw Hwang
{"title":"Integrated Lower Limb Robotic Orthosis with Embedded Highly Oriented Electrospinning Sensors by Fuzzy Logic-Based Gait Phase Detection and Motion Control.","authors":"Ming-Chan Lee, Cheng-Tang Pan, Jhih-Syuan Huang, Zheng-Yu Hoe, Yeong-Maw Hwang","doi":"10.3390/s25051606","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces an integrated lower limb robotic orthosis with near-field electrospinning (NFES) piezoelectric sensors and a fuzzy logic-based gait phase detection system to enhance mobility assistance and rehabilitation. The exoskeleton incorporates embedded pressure sensors within the insoles to capture ground reaction forces (GRFs) in real-time. A fuzzy logic inference system processes these signals, classifying gait phases such as stance, initial contact, mid-stance, and pre-swing. The NFES technique enables the fabrication of highly oriented nanofibers, improving sensor sensitivity and reliability. The system employs a master-slave control framework. A Texas Instruments (TI) TMS320F28069 microcontroller (Texas Instruments, Dallas, TX, USA) processes gait data and transmits actuation commands to motors and harmonic drives at the hip and knee joints. The control strategy follows a three-loop methodology, ensuring stable operation. Experimental validation assesses the system's accuracy under various conditions, including no-load and loaded scenarios. Results demonstrate that the exoskeleton accurately detects gait phases, achieving a maximum tracking error of 4.23% in an 8-s gait cycle under no-load conditions and 4.34% when tested with a 68 kg user. Faster motion cycles introduce a maximum error of 6.79% for a 3-s gait cycle, confirming the system's adaptability to dynamic walking conditions. These findings highlight the effectiveness of the developed exoskeleton in interpreting human motion intentions, positioning it as a promising solution for wearable rehabilitation and mobility assistance.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051606","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an integrated lower limb robotic orthosis with near-field electrospinning (NFES) piezoelectric sensors and a fuzzy logic-based gait phase detection system to enhance mobility assistance and rehabilitation. The exoskeleton incorporates embedded pressure sensors within the insoles to capture ground reaction forces (GRFs) in real-time. A fuzzy logic inference system processes these signals, classifying gait phases such as stance, initial contact, mid-stance, and pre-swing. The NFES technique enables the fabrication of highly oriented nanofibers, improving sensor sensitivity and reliability. The system employs a master-slave control framework. A Texas Instruments (TI) TMS320F28069 microcontroller (Texas Instruments, Dallas, TX, USA) processes gait data and transmits actuation commands to motors and harmonic drives at the hip and knee joints. The control strategy follows a three-loop methodology, ensuring stable operation. Experimental validation assesses the system's accuracy under various conditions, including no-load and loaded scenarios. Results demonstrate that the exoskeleton accurately detects gait phases, achieving a maximum tracking error of 4.23% in an 8-s gait cycle under no-load conditions and 4.34% when tested with a 68 kg user. Faster motion cycles introduce a maximum error of 6.79% for a 3-s gait cycle, confirming the system's adaptability to dynamic walking conditions. These findings highlight the effectiveness of the developed exoskeleton in interpreting human motion intentions, positioning it as a promising solution for wearable rehabilitation and mobility assistance.

通过基于模糊逻辑的步态相位检测和运动控制,实现带有嵌入式高定向电纺传感器的集成下肢机器人矫形器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信