Novelty Recognition: Fish Species Classification via Open-Set Recognition.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-04 DOI:10.3390/s25051570
Manuel Córdova, Ricardo da Silva Torres, Aloysius van Helmond, Gert Kootstra
{"title":"Novelty Recognition: Fish Species Classification via Open-Set Recognition.","authors":"Manuel Córdova, Ricardo da Silva Torres, Aloysius van Helmond, Gert Kootstra","doi":"10.3390/s25051570","DOIUrl":null,"url":null,"abstract":"<p><p>To support the sustainable use of marine resources, regulations have been proposed to reduce fish discards focusing on the registration of all listed species. To comply with such regulations, computer vision methods have been developed. Nevertheless, current approaches are constrained by their closed-set nature, where they are designed only to recognize fish species that were present during training. In the real world, however, samples of unknown fish species may appear in different fishing regions or seasons, requiring fish classification to be treated as an open-set problem. This work focuses on the assessment of open-set recognition to automate the registration process of fish. The state-of-the-art Multiple Gaussian Prototype Learning (MGPL) was compared with the simple yet powerful Open-Set Nearest Neighbor (OSNN) and the Probability of Inclusion Support Vector Machine (PISVM). For the experiments, the Fish Detection and Weight Estimation dataset, containing images of 2216 fish instances from nine species, was used. Experimental results demonstrated that OSNN and PISVM outperformed MGPL in both recognizing known and unknown species. OSNN achieved the best results when classifying samples as either one of the known species or as an unknown species with an F1-macro of 0.79±0.05 and an AUROC score of 0.92±0.01 surpassing PISVM by 0.05 and 0.03, respectively.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051570","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To support the sustainable use of marine resources, regulations have been proposed to reduce fish discards focusing on the registration of all listed species. To comply with such regulations, computer vision methods have been developed. Nevertheless, current approaches are constrained by their closed-set nature, where they are designed only to recognize fish species that were present during training. In the real world, however, samples of unknown fish species may appear in different fishing regions or seasons, requiring fish classification to be treated as an open-set problem. This work focuses on the assessment of open-set recognition to automate the registration process of fish. The state-of-the-art Multiple Gaussian Prototype Learning (MGPL) was compared with the simple yet powerful Open-Set Nearest Neighbor (OSNN) and the Probability of Inclusion Support Vector Machine (PISVM). For the experiments, the Fish Detection and Weight Estimation dataset, containing images of 2216 fish instances from nine species, was used. Experimental results demonstrated that OSNN and PISVM outperformed MGPL in both recognizing known and unknown species. OSNN achieved the best results when classifying samples as either one of the known species or as an unknown species with an F1-macro of 0.79±0.05 and an AUROC score of 0.92±0.01 surpassing PISVM by 0.05 and 0.03, respectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信