{"title":"MRA-YOLOv8: A Network Enhancing Feature Extraction Ability for Photovoltaic Cell Defects.","authors":"Nannan Wang, Siqi Huang, Xiangpeng Liu, Zhining Wang, Yi Liu, Zhe Gao","doi":"10.3390/s25051542","DOIUrl":null,"url":null,"abstract":"<p><p>To address the challenges posed by complex backgrounds and the low occurrence in photovoltaic cell images captured by industrial sensors, we propose a novel defect detection method: MRA-YOLOv8. First, a multi-branch coordinate attention network (MBCANet) is introduced into the backbone. The coordinate attention network (CANet) is incorporated to mitigate the noise impact of background information on the detection task, and multiple branches are employed to enhance the model's feature extraction capability. Second, we integrate a multi-path feature extraction module, ResBlock, into the neck. This module provides finer-grained multi-scale features, improving feature extraction from complex backgrounds and enhancing the model's robustness. Finally, we implement alpha-minimum point distance-based IoU (AMPDIoU) to the head. This loss function enhances the accuracy and robustness of small object detection by integrating minimum point distance-based IoU (MPDIoU) and Alpha-IoU methods. The results demonstrate that MRA-YOLOv8 outperforms other mainstream methods in detection performance. On the photovoltaic electroluminescence anomaly detection (PVEL-AD) dataset, the proposed method achieves a <i>mAP</i><sub>50</sub> of 91.7%, representing an improvement of 3.1% over YOLOv8 and 16.1% over detection transformer (DETR). On the SPDI dataset, our method achieves a <i>mAP</i><sub>50</sub> of 69.3%, showing a 2.1% improvement over YOLOv8 and a 6.6% improvement over DETR. The proposed MRA-YOLOv8 also exhibits great deployment potential. It can be effectively integrated with drone-based inspection systems, allowing for efficient and accurate PV plant inspections. Moreover, to tackle the issue of data imbalance, we propose generating synthetic defect data via generative adversarial networks (GANs), which can supplement the limited defect samples and improve the model's generalization ability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051542","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the challenges posed by complex backgrounds and the low occurrence in photovoltaic cell images captured by industrial sensors, we propose a novel defect detection method: MRA-YOLOv8. First, a multi-branch coordinate attention network (MBCANet) is introduced into the backbone. The coordinate attention network (CANet) is incorporated to mitigate the noise impact of background information on the detection task, and multiple branches are employed to enhance the model's feature extraction capability. Second, we integrate a multi-path feature extraction module, ResBlock, into the neck. This module provides finer-grained multi-scale features, improving feature extraction from complex backgrounds and enhancing the model's robustness. Finally, we implement alpha-minimum point distance-based IoU (AMPDIoU) to the head. This loss function enhances the accuracy and robustness of small object detection by integrating minimum point distance-based IoU (MPDIoU) and Alpha-IoU methods. The results demonstrate that MRA-YOLOv8 outperforms other mainstream methods in detection performance. On the photovoltaic electroluminescence anomaly detection (PVEL-AD) dataset, the proposed method achieves a mAP50 of 91.7%, representing an improvement of 3.1% over YOLOv8 and 16.1% over detection transformer (DETR). On the SPDI dataset, our method achieves a mAP50 of 69.3%, showing a 2.1% improvement over YOLOv8 and a 6.6% improvement over DETR. The proposed MRA-YOLOv8 also exhibits great deployment potential. It can be effectively integrated with drone-based inspection systems, allowing for efficient and accurate PV plant inspections. Moreover, to tackle the issue of data imbalance, we propose generating synthetic defect data via generative adversarial networks (GANs), which can supplement the limited defect samples and improve the model's generalization ability.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.