Molecular Shape-Preserving Au Electrode for Progesterone Detection.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-06 DOI:10.3390/s25051620
Fukuto Soyama, Taisei Motomura, Kenshin Takemura
{"title":"Molecular Shape-Preserving Au Electrode for Progesterone Detection.","authors":"Fukuto Soyama, Taisei Motomura, Kenshin Takemura","doi":"10.3390/s25051620","DOIUrl":null,"url":null,"abstract":"<p><p>Quantifying progesterone levels in the body is an important indicator of early pregnancy and health. Molecular shape-preserving electrodes have garnered attention in electrochemical biosensors because they can detect targets without the need for expensive enzymes or antibodies. However, some of the currently used methods typically have low electrode durability. Here, progesterone, for which antibodies are typically expensive, was used to develop a molecular shape-preserving electrode using Au to enhance its long-term stability. The physical properties of the electrodes were characterized using scanning electron microscopy (SEM), the electrochemical surface area (ECSA), and cyclic voltammetry (CV). The specific structure of the electrode demonstrated an electrochemical double layer comparable to that of a smooth Au electrode, confirming its high durability. The detection performance was assessed using CV, square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The current response to progesterone increased in a concentration-dependent manner, but decreased from the saturated state owing to electrodeposition on the surface. Additionally, electrochemical impedance measurements showed high selectivity compared with hormones with similar structures. The fabricated molecular shape-preserving electrode exhibits an excellent durability, stability, and detection performance, confirming its suitability for long-term use. These findings pave the way to new possibilities for electrode fabrication.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051620","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying progesterone levels in the body is an important indicator of early pregnancy and health. Molecular shape-preserving electrodes have garnered attention in electrochemical biosensors because they can detect targets without the need for expensive enzymes or antibodies. However, some of the currently used methods typically have low electrode durability. Here, progesterone, for which antibodies are typically expensive, was used to develop a molecular shape-preserving electrode using Au to enhance its long-term stability. The physical properties of the electrodes were characterized using scanning electron microscopy (SEM), the electrochemical surface area (ECSA), and cyclic voltammetry (CV). The specific structure of the electrode demonstrated an electrochemical double layer comparable to that of a smooth Au electrode, confirming its high durability. The detection performance was assessed using CV, square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS). The current response to progesterone increased in a concentration-dependent manner, but decreased from the saturated state owing to electrodeposition on the surface. Additionally, electrochemical impedance measurements showed high selectivity compared with hormones with similar structures. The fabricated molecular shape-preserving electrode exhibits an excellent durability, stability, and detection performance, confirming its suitability for long-term use. These findings pave the way to new possibilities for electrode fabrication.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信