Time to First Fix Robustness of Global Navigation Satellite Systems: Comparison Study.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-05 DOI:10.3390/s25051599
Carlos Hernando-Ramiro, Óscar Gamallo-Palomares, Javier Junquera-Sánchez, José Antonio Gómez-Sánchez
{"title":"Time to First Fix Robustness of Global Navigation Satellite Systems: Comparison Study.","authors":"Carlos Hernando-Ramiro, Óscar Gamallo-Palomares, Javier Junquera-Sánchez, José Antonio Gómez-Sánchez","doi":"10.3390/s25051599","DOIUrl":null,"url":null,"abstract":"<p><p>The time to first fix (TTFF) measures the time elapsed by a global navigation satellite system (GNSS) receiver from switch-on to provision of a navigation solution. This parameter is crucial for applications where a position, within an acceptable error, is needed as soon as possible after turning the device on. The quality of the TTFF depends mainly on the receiver, the environment, and the GNSS satellites employed. Although all four available GNSSs (BeiDou, Galileo, GLONASS, and GPS) are complementary, their constellations and signals differ, providing different TTFF performances. This becomes even more relevant in hostile environments, where the TTFF degrades from nominal results. In this work, the robustness of the signals of the four GNSSs against different levels of harshness and its influence on the TTFF performance are evaluated in a comparative way. For this purpose, a typical scenario for mass-market GNSS applications, involving cold-start conditions, single-frequency signals, and a low-cost receiver, is considered. The results indicate that GPS provides the most robust TTFF, followed by GLONASS (although at the expense of positioning accuracy), BeiDou, and Galileo, in that order.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051599","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The time to first fix (TTFF) measures the time elapsed by a global navigation satellite system (GNSS) receiver from switch-on to provision of a navigation solution. This parameter is crucial for applications where a position, within an acceptable error, is needed as soon as possible after turning the device on. The quality of the TTFF depends mainly on the receiver, the environment, and the GNSS satellites employed. Although all four available GNSSs (BeiDou, Galileo, GLONASS, and GPS) are complementary, their constellations and signals differ, providing different TTFF performances. This becomes even more relevant in hostile environments, where the TTFF degrades from nominal results. In this work, the robustness of the signals of the four GNSSs against different levels of harshness and its influence on the TTFF performance are evaluated in a comparative way. For this purpose, a typical scenario for mass-market GNSS applications, involving cold-start conditions, single-frequency signals, and a low-cost receiver, is considered. The results indicate that GPS provides the most robust TTFF, followed by GLONASS (although at the expense of positioning accuracy), BeiDou, and Galileo, in that order.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信