Guoming Du, Haiqi Zhu, Zhen Ding, Hong Huang, Xiaofeng Bie, Feng Jiang
{"title":"Meta-Transfer-Learning-Based Multimodal Human Pose Estimation for Lower Limbs.","authors":"Guoming Du, Haiqi Zhu, Zhen Ding, Hong Huang, Xiaofeng Bie, Feng Jiang","doi":"10.3390/s25051613","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and reliable human pose estimation (HPE) is essential in interactive systems, particularly for applications requiring personalized adaptation, such as controlling cooperative robots and wearable exoskeletons, especially for healthcare monitoring equipment. However, continuously maintaining diverse datasets and frequently updating models for individual adaptation are both resource intensive and time-consuming. To address these challenges, we propose a meta-transfer learning framework that integrates multimodal inputs, including high-frequency surface electromyography (sEMG), visual-inertial odometry (VIO), and high-precision image data. This framework improves both accuracy and stability through a knowledge fusion strategy, resolving the data alignment issue, ensuring seamless integration of different modalities. To further enhance adaptability, we introduce a training and adaptation framework with few-shot learning, facilitating efficient updating of encoders and decoders for dynamic feature adjustment in real-time applications. Experimental results demonstrate that our framework provides accurate, high-frequency pose estimations, particularly for intra-subject adaptation. Our approach enables efficient adaptation to new individuals with only a few new samples, providing an effective solution for personalized motion analysis with minimal data.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051613","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and reliable human pose estimation (HPE) is essential in interactive systems, particularly for applications requiring personalized adaptation, such as controlling cooperative robots and wearable exoskeletons, especially for healthcare monitoring equipment. However, continuously maintaining diverse datasets and frequently updating models for individual adaptation are both resource intensive and time-consuming. To address these challenges, we propose a meta-transfer learning framework that integrates multimodal inputs, including high-frequency surface electromyography (sEMG), visual-inertial odometry (VIO), and high-precision image data. This framework improves both accuracy and stability through a knowledge fusion strategy, resolving the data alignment issue, ensuring seamless integration of different modalities. To further enhance adaptability, we introduce a training and adaptation framework with few-shot learning, facilitating efficient updating of encoders and decoders for dynamic feature adjustment in real-time applications. Experimental results demonstrate that our framework provides accurate, high-frequency pose estimations, particularly for intra-subject adaptation. Our approach enables efficient adaptation to new individuals with only a few new samples, providing an effective solution for personalized motion analysis with minimal data.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.