Meta-Transfer-Learning-Based Multimodal Human Pose Estimation for Lower Limbs.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-06 DOI:10.3390/s25051613
Guoming Du, Haiqi Zhu, Zhen Ding, Hong Huang, Xiaofeng Bie, Feng Jiang
{"title":"Meta-Transfer-Learning-Based Multimodal Human Pose Estimation for Lower Limbs.","authors":"Guoming Du, Haiqi Zhu, Zhen Ding, Hong Huang, Xiaofeng Bie, Feng Jiang","doi":"10.3390/s25051613","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and reliable human pose estimation (HPE) is essential in interactive systems, particularly for applications requiring personalized adaptation, such as controlling cooperative robots and wearable exoskeletons, especially for healthcare monitoring equipment. However, continuously maintaining diverse datasets and frequently updating models for individual adaptation are both resource intensive and time-consuming. To address these challenges, we propose a meta-transfer learning framework that integrates multimodal inputs, including high-frequency surface electromyography (sEMG), visual-inertial odometry (VIO), and high-precision image data. This framework improves both accuracy and stability through a knowledge fusion strategy, resolving the data alignment issue, ensuring seamless integration of different modalities. To further enhance adaptability, we introduce a training and adaptation framework with few-shot learning, facilitating efficient updating of encoders and decoders for dynamic feature adjustment in real-time applications. Experimental results demonstrate that our framework provides accurate, high-frequency pose estimations, particularly for intra-subject adaptation. Our approach enables efficient adaptation to new individuals with only a few new samples, providing an effective solution for personalized motion analysis with minimal data.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051613","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and reliable human pose estimation (HPE) is essential in interactive systems, particularly for applications requiring personalized adaptation, such as controlling cooperative robots and wearable exoskeletons, especially for healthcare monitoring equipment. However, continuously maintaining diverse datasets and frequently updating models for individual adaptation are both resource intensive and time-consuming. To address these challenges, we propose a meta-transfer learning framework that integrates multimodal inputs, including high-frequency surface electromyography (sEMG), visual-inertial odometry (VIO), and high-precision image data. This framework improves both accuracy and stability through a knowledge fusion strategy, resolving the data alignment issue, ensuring seamless integration of different modalities. To further enhance adaptability, we introduce a training and adaptation framework with few-shot learning, facilitating efficient updating of encoders and decoders for dynamic feature adjustment in real-time applications. Experimental results demonstrate that our framework provides accurate, high-frequency pose estimations, particularly for intra-subject adaptation. Our approach enables efficient adaptation to new individuals with only a few new samples, providing an effective solution for personalized motion analysis with minimal data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信