Yafeng Zhou, Fadilla 'Atyka Nor Rashid, Marizuana Mat Daud, Mohammad Kamrul Hasan, Wangmei Chen
{"title":"Machine Learning-Based Computer Vision for Depth Camera-Based Physiotherapy Movement Assessment: A Systematic Review.","authors":"Yafeng Zhou, Fadilla 'Atyka Nor Rashid, Marizuana Mat Daud, Mohammad Kamrul Hasan, Wangmei Chen","doi":"10.3390/s25051586","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning-based computer vision techniques using depth cameras have shown potential in physiotherapy movement assessment. However, a comprehensive understanding of their implementation, effectiveness, and limitations remains needed. Following PRISMA guidelines, we systematically reviewed studies from 2020 to 2024 across Web of Science, Scopus, PubMed, and Astrophysics Data System to explore recent advancements. From 371 initially identified publications, 18 met the inclusion criteria for detailed analysis. The analysis revealed three primary implementation scenarios: local (50%), clinical (33.4%), and remote (22.3%). Depth cameras, particularly the Kinect series (65.4%), dominated data collection methods. Data processing approaches primarily utilized RGB-D (55.6%) and skeletal data (27.8%), with algorithms split between traditional machine learning (44.4%) and deep learning (41.7%). Key challenges included limited real-world validation, insufficient dataset diversity, and algorithm generalization issues, while machine learning-based computer vision systems demonstrated effectiveness in movement assessment tasks, further research is needed to address validation in clinical settings and improve algorithm generalization. This review provides a foundation for enhancing computer vision-based assessment tools in physiotherapy practice.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051586","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning-based computer vision techniques using depth cameras have shown potential in physiotherapy movement assessment. However, a comprehensive understanding of their implementation, effectiveness, and limitations remains needed. Following PRISMA guidelines, we systematically reviewed studies from 2020 to 2024 across Web of Science, Scopus, PubMed, and Astrophysics Data System to explore recent advancements. From 371 initially identified publications, 18 met the inclusion criteria for detailed analysis. The analysis revealed three primary implementation scenarios: local (50%), clinical (33.4%), and remote (22.3%). Depth cameras, particularly the Kinect series (65.4%), dominated data collection methods. Data processing approaches primarily utilized RGB-D (55.6%) and skeletal data (27.8%), with algorithms split between traditional machine learning (44.4%) and deep learning (41.7%). Key challenges included limited real-world validation, insufficient dataset diversity, and algorithm generalization issues, while machine learning-based computer vision systems demonstrated effectiveness in movement assessment tasks, further research is needed to address validation in clinical settings and improve algorithm generalization. This review provides a foundation for enhancing computer vision-based assessment tools in physiotherapy practice.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.