Deep-Learning-Based Analysis of Electronic Skin Sensing Data.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-06 DOI:10.3390/s25051615
Yuchen Guo, Xidi Sun, Lulu Li, Yi Shi, Wen Cheng, Lijia Pan
{"title":"Deep-Learning-Based Analysis of Electronic Skin Sensing Data.","authors":"Yuchen Guo, Xidi Sun, Lulu Li, Yi Shi, Wen Cheng, Lijia Pan","doi":"10.3390/s25051615","DOIUrl":null,"url":null,"abstract":"<p><p>E-skin is an integrated electronic system that can mimic the perceptual ability of human skin. Traditional analysis methods struggle to handle complex e-skin data, which include time series and multiple patterns, especially when dealing with intricate signals and real-time responses. Recently, deep learning techniques, such as the convolutional neural network, recurrent neural network, and transformer methods, provide effective solutions that can automatically extract data features and recognize patterns, significantly improving the analysis of e-skin data. Deep learning is not only capable of handling multimodal data but can also provide real-time response and personalized predictions in dynamic environments. Nevertheless, problems such as insufficient data annotation and high demand for computational resources still limit the application of e-skin. Optimizing deep learning algorithms, improving computational efficiency, and exploring hardware-algorithm co-designing will be the key to future development. This review aims to present the deep learning techniques applied in e-skin and provide inspiration for subsequent researchers. We first summarize the sources and characteristics of e-skin data and review the deep learning models applicable to e-skin data and their applications in data analysis. Additionally, we discuss the use of deep learning in e-skin, particularly in health monitoring and human-machine interactions, and we explore the current challenges and future development directions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902811/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051615","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

E-skin is an integrated electronic system that can mimic the perceptual ability of human skin. Traditional analysis methods struggle to handle complex e-skin data, which include time series and multiple patterns, especially when dealing with intricate signals and real-time responses. Recently, deep learning techniques, such as the convolutional neural network, recurrent neural network, and transformer methods, provide effective solutions that can automatically extract data features and recognize patterns, significantly improving the analysis of e-skin data. Deep learning is not only capable of handling multimodal data but can also provide real-time response and personalized predictions in dynamic environments. Nevertheless, problems such as insufficient data annotation and high demand for computational resources still limit the application of e-skin. Optimizing deep learning algorithms, improving computational efficiency, and exploring hardware-algorithm co-designing will be the key to future development. This review aims to present the deep learning techniques applied in e-skin and provide inspiration for subsequent researchers. We first summarize the sources and characteristics of e-skin data and review the deep learning models applicable to e-skin data and their applications in data analysis. Additionally, we discuss the use of deep learning in e-skin, particularly in health monitoring and human-machine interactions, and we explore the current challenges and future development directions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信