Automated Segmentation of Breast Cancer Focal Lesions on Ultrasound Images.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-05 DOI:10.3390/s25051593
Dmitry Pasynkov, Ivan Egoshin, Alexey Kolchev, Ivan Kliouchkin, Olga Pasynkova, Zahraa Saad, Anis Daou, Esam Mohamed Abuzenar
{"title":"Automated Segmentation of Breast Cancer Focal Lesions on Ultrasound Images.","authors":"Dmitry Pasynkov, Ivan Egoshin, Alexey Kolchev, Ivan Kliouchkin, Olga Pasynkova, Zahraa Saad, Anis Daou, Esam Mohamed Abuzenar","doi":"10.3390/s25051593","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound (US) remains the main modality for the differential diagnosis of changes revealed by mammography. However, the US images themselves are subject to various types of noise and artifacts from reflections, which can worsen the quality of their analysis. Deep learning methods have a number of disadvantages, including the often insufficient substantiation of the model, and the complexity of collecting a representative training database. Therefore, it is necessary to develop effective algorithms for the segmentation, classification, and analysis of US images. The aim of the work is to develop a method for the automated detection of pathological lesions in breast US images and their segmentation. A method is proposed that includes two stages of video image processing: (1) searching for a region of interest using a random forest classifier, which classifies normal tissues, (2) selecting the contour of the lesion based on the difference in brightness of image pixels. The test set included 52 ultrasound videos which contained histologically proven suspicious lesions. The average frequency of lesion detection per frame was 91.89%, and the average accuracy of contour selection according to the IoU metric was 0.871. The proposed method can be used to segment a suspicious lesion.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902609/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051593","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound (US) remains the main modality for the differential diagnosis of changes revealed by mammography. However, the US images themselves are subject to various types of noise and artifacts from reflections, which can worsen the quality of their analysis. Deep learning methods have a number of disadvantages, including the often insufficient substantiation of the model, and the complexity of collecting a representative training database. Therefore, it is necessary to develop effective algorithms for the segmentation, classification, and analysis of US images. The aim of the work is to develop a method for the automated detection of pathological lesions in breast US images and their segmentation. A method is proposed that includes two stages of video image processing: (1) searching for a region of interest using a random forest classifier, which classifies normal tissues, (2) selecting the contour of the lesion based on the difference in brightness of image pixels. The test set included 52 ultrasound videos which contained histologically proven suspicious lesions. The average frequency of lesion detection per frame was 91.89%, and the average accuracy of contour selection according to the IoU metric was 0.871. The proposed method can be used to segment a suspicious lesion.

超声图像上乳腺癌病灶的自动分割。
超声(US)仍然是鉴别诊断乳房x光检查显示的病变的主要方式。然而,美国图像本身受到各种类型的噪声和反射伪影的影响,这可能会降低其分析质量。深度学习方法有许多缺点,包括模型的真实性不足,以及收集代表性训练数据库的复杂性。因此,有必要开发有效的算法对美国图像进行分割、分类和分析。工作的目的是开发一种方法,自动检测病理病变的乳腺图像和他们的分割。提出了一种包含两个阶段的视频图像处理方法:(1)使用随机森林分类器搜索感兴趣的区域,该分类器对正常组织进行分类;(2)根据图像像素的亮度差异选择病变轮廓。测试集包括52个超声视频,其中包含组织学证实的可疑病变。每帧病灶检测的平均频率为91.89%,根据IoU度量选择轮廓的平均准确率为0.871。该方法可用于分割可疑病灶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信