Sizes, conformational fluctuations, and SAXS profiles for intrinsically disordered proteins.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-04-01 DOI:10.1002/pro.70067
Mauro L Mugnai, Debayan Chakraborty, Hung T Nguyen, Farkhad Maksudov, Abhinaw Kumar, Wade Zeno, Jeanne C Stachowiak, John E Straub, D Thirumalai
{"title":"Sizes, conformational fluctuations, and SAXS profiles for intrinsically disordered proteins.","authors":"Mauro L Mugnai, Debayan Chakraborty, Hung T Nguyen, Farkhad Maksudov, Abhinaw Kumar, Wade Zeno, Jeanne C Stachowiak, John E Straub, D Thirumalai","doi":"10.1002/pro.70067","DOIUrl":null,"url":null,"abstract":"<p><p>The preponderance of intrinsically disordered proteins (IDPs) in the eukaryotic proteome, and their ability to interact with each other, and with folded proteins, RNA, and DNA for functional purposes, have made it important to quantitatively characterize their biophysical properties. Toward this end, we developed the transferable self-organized polymer (SOP-IDP) model to calculate the properties of several IDPs. The values of the radius of gyration ( <math> <semantics> <mrow><msub><mi>R</mi> <mi>g</mi></msub> </mrow> <annotation>$$ {R}_g $$</annotation></semantics> </math> ) obtained from SOP-IDP simulations are in excellent agreement (correlation coefficient of 0.96) with those estimated from SAXS experiments. For AP180 and Epsin, the predicted values of the hydrodynamic radii ( <math> <semantics> <mrow><msub><mi>R</mi> <mi>h</mi></msub> <mi>s</mi></mrow> <annotation>$$ {R}_h\\mathrm{s} $$</annotation></semantics> </math> ) are in nearly quantitative agreement with those from fluorescence correlation spectroscopy (FCS) experiments. Strikingly, the calculated SAXS profiles for 36 IDPs are also nearly superimposable on the experimental profiles. The dependence of <math> <semantics> <mrow><msub><mi>R</mi> <mi>g</mi></msub> </mrow> <annotation>$$ {R}_g $$</annotation></semantics> </math> and the mean end-to-end distance ( <math> <semantics> <mrow><msub><mi>R</mi> <mi>ee</mi></msub> </mrow> <annotation>$$ {R}_{ee} $$</annotation></semantics> </math> ) on chain length, <math> <semantics><mrow><mi>N</mi></mrow> <annotation>$$ N $$</annotation></semantics> </math> , follows Flory's scaling law, <math> <semantics> <mrow><msub><mi>R</mi> <mi>α</mi></msub> <mo>≈</mo> <msub><mi>a</mi> <mi>α</mi></msub> <msup><mi>N</mi> <mn>0.588</mn></msup> </mrow> <annotation>$$ {R}_{\\alpha}\\approx {a}_{\\alpha }{N}^{0.588} $$</annotation></semantics> </math> ( <math> <semantics><mrow><mi>α</mi> <mo>=</mo> <mi>g</mi> <mo>,</mo></mrow> <annotation>$$ \\alpha =g, $$</annotation></semantics> </math> and <math> <semantics><mrow><mi>e</mi></mrow> <annotation>$$ e $$</annotation></semantics> </math> ), suggesting that globally IDPs behave as synthetic polymers in a good solvent. This finding depends on the solvent quality, which can be altered by changing variables such as pH and salt concentration. The values of <math> <semantics> <mrow><msub><mi>a</mi> <mi>g</mi></msub> </mrow> <annotation>$$ {a}_g $$</annotation></semantics> </math> and <math> <semantics> <mrow><msub><mi>a</mi> <mi>e</mi></msub> </mrow> <annotation>$$ {a}_e $$</annotation></semantics> </math> are 0.20 and 0.48 nm, respectively. Surprisingly, finite size corrections to scaling, expected on theoretical grounds, are negligible for <math> <semantics> <mrow><msub><mi>R</mi> <mi>g</mi></msub> </mrow> <annotation>$$ {R}_g $$</annotation></semantics> </math> and <math> <semantics> <mrow><msub><mi>R</mi> <mi>ee</mi></msub> </mrow> <annotation>$$ {R}_{ee} $$</annotation></semantics> </math> . In contrast, only by accounting for the finite sizes of the IDPs, the dependence of experimentally measurable <math> <semantics> <mrow><msub><mi>R</mi> <mi>h</mi></msub> </mrow> <annotation>$$ {R}_h $$</annotation></semantics> </math> on <math> <semantics><mrow><mi>N</mi></mrow> <annotation>$$ N $$</annotation></semantics> </math> can be quantitatively explained using <math> <semantics><mrow><mi>ν</mi> <mo>=</mo> <mn>0.588</mn></mrow> <annotation>$$ \\nu =0.588 $$</annotation></semantics> </math> . Although Flory scaling law captures the estimates for <math> <semantics> <mrow><msub><mi>R</mi> <mi>g</mi></msub> </mrow> <annotation>$$ {R}_g $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>R</mi> <mi>ee</mi></msub> </mrow> <annotation>$$ {R}_{ee} $$</annotation></semantics> </math> , and <math> <semantics> <mrow><msub><mi>R</mi> <mi>h</mi></msub> </mrow> <annotation>$$ {R}_h $$</annotation></semantics> </math> accurately, the spread of the simulated data around the theoretical curve is suggestive of of sequence-specific features that emerge through a fine-grained analysis of the conformational ensembles using hierarchical clustering. Typically, the ensemble of conformations partitions into three distinct clusters, having different equilibrium populations and structural properties. Without any further readjustments to the parameters of the SOP-IDP model, we also obtained nearly quantitative agreement with paramagnetic relaxation enhancement (PRE) measurements for α-synuclein. The transferable SOP-IDP model sets the stage for several applications, including the study of phase separation in IDPs and interactions with nucleic acids.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 4","pages":"e70067"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The preponderance of intrinsically disordered proteins (IDPs) in the eukaryotic proteome, and their ability to interact with each other, and with folded proteins, RNA, and DNA for functional purposes, have made it important to quantitatively characterize their biophysical properties. Toward this end, we developed the transferable self-organized polymer (SOP-IDP) model to calculate the properties of several IDPs. The values of the radius of gyration ( R g $$ {R}_g $$ ) obtained from SOP-IDP simulations are in excellent agreement (correlation coefficient of 0.96) with those estimated from SAXS experiments. For AP180 and Epsin, the predicted values of the hydrodynamic radii ( R h s $$ {R}_h\mathrm{s} $$ ) are in nearly quantitative agreement with those from fluorescence correlation spectroscopy (FCS) experiments. Strikingly, the calculated SAXS profiles for 36 IDPs are also nearly superimposable on the experimental profiles. The dependence of R g $$ {R}_g $$ and the mean end-to-end distance ( R ee $$ {R}_{ee} $$ ) on chain length, N $$ N $$ , follows Flory's scaling law, R α a α N 0.588 $$ {R}_{\alpha}\approx {a}_{\alpha }{N}^{0.588} $$ ( α = g , $$ \alpha =g, $$ and e $$ e $$ ), suggesting that globally IDPs behave as synthetic polymers in a good solvent. This finding depends on the solvent quality, which can be altered by changing variables such as pH and salt concentration. The values of a g $$ {a}_g $$ and a e $$ {a}_e $$ are 0.20 and 0.48 nm, respectively. Surprisingly, finite size corrections to scaling, expected on theoretical grounds, are negligible for R g $$ {R}_g $$ and R ee $$ {R}_{ee} $$ . In contrast, only by accounting for the finite sizes of the IDPs, the dependence of experimentally measurable R h $$ {R}_h $$ on N $$ N $$ can be quantitatively explained using ν = 0.588 $$ \nu =0.588 $$ . Although Flory scaling law captures the estimates for R g $$ {R}_g $$ , R ee $$ {R}_{ee} $$ , and R h $$ {R}_h $$ accurately, the spread of the simulated data around the theoretical curve is suggestive of of sequence-specific features that emerge through a fine-grained analysis of the conformational ensembles using hierarchical clustering. Typically, the ensemble of conformations partitions into three distinct clusters, having different equilibrium populations and structural properties. Without any further readjustments to the parameters of the SOP-IDP model, we also obtained nearly quantitative agreement with paramagnetic relaxation enhancement (PRE) measurements for α-synuclein. The transferable SOP-IDP model sets the stage for several applications, including the study of phase separation in IDPs and interactions with nucleic acids.

大小,构象波动,和本质上无序的蛋白质SAXS谱。
内在无序蛋白(IDPs)在真核生物蛋白质组中的优势,以及它们相互作用的能力,以及它们与折叠蛋白、RNA和DNA相互作用的能力,使得定量表征它们的生物物理特性变得重要。为此,我们开发了可转移自组织聚合物(SOP-IDP)模型来计算几种idp的性质。从SOP-IDP模拟得到的旋转半径(R g $$ {R}_g $$)值与SAXS实验估计的值非常吻合(相关系数为0.96)。对于AP180和Epsin,预测的流体动力半径(R h s $$ {R}_h\mathrm{s} $$)与荧光相关光谱(FCS)实验结果基本一致。引人注目的是,36个IDPs的计算SAXS曲线也几乎与实验曲线重叠。R g $$ {R}_g $$和平均端到端距离(R ee $$ {R}_{ee} $$)对链长N $$ N $$的依赖关系符合Flory标度定律,R α≈a α N 0.588 $$ {R}_{\alpha}\approx {a}_{\alpha }{N}^{0.588} $$ (α = g, $$ \alpha =g, $$和e $$ e $$),表明整体上IDPs在良好的溶剂中表现为合成聚合物。这一发现取决于溶剂的质量,而溶剂的质量可以通过改变pH值和盐浓度等变量来改变。a g $$ {a}_g $$和a e $$ {a}_e $$的值分别为0.20和0.48 nm。令人惊讶的是,在理论基础上预期的缩放的有限尺寸修正对于rg $$ {R}_g $$和ree $$ {R}_{ee} $$是可以忽略不计的。相反,只有考虑到IDPs的有限大小,实验可测量的R h $$ {R}_h $$对N $$ N $$的依赖性可以用ν = 0.588 $$ \nu =0.588 $$来定量解释。虽然Flory缩放定律准确地捕获了R g $$ {R}_g $$, R ee $$ {R}_{ee} $$和R h $$ {R}_h $$的估计,但模拟数据在理论曲线周围的传播表明,通过使用分层聚类对构象集成进行细粒度分析,出现了序列特定的特征。通常,构象的集合分为三个不同的簇,具有不同的平衡种群和结构性质。在不进一步调整SOP-IDP模型参数的情况下,我们也获得了与α-synuclein的顺磁弛豫增强(PRE)测量结果基本一致的定量结果。可转移的SOP-IDP模型为几种应用奠定了基础,包括研究idp中的相分离和与核酸的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信