{"title":"Fixed-Time Global Sliding Mode Control for Parallel Robot Mobile Platform with Prescribed Performance.","authors":"Aojie Wang, Guoqin Gao, Xue Li","doi":"10.3390/s25051584","DOIUrl":null,"url":null,"abstract":"<p><p>A fixed-time global sliding mode control with prescribed performance is proposed for the varying center of mass parallel robot mobile platform with model uncertainties and external disturbances to improve the global robustness and convergence performance of the model, and reduce overshoots. Firstly, kinematic and dynamic models of the parallel robot mobile platform with a varying center of mass are established. A reference velocity controller for the mobile platform system's outer loop is designed using the back-stepping method, which provides the expected reference velocity for the inner loop controller. Secondly, to improve the global robustness and convergence performance of the system, a fixed-time global sliding mode control algorithm in the inner loop of the system is designed to eliminate the reaching phase of sliding mode control and ensure that the system converges quickly within a fixed time. Meanwhile, by designing a performance function to constrain the system errors within the performance boundary further, the fixed-time global sliding mode control with prescribed performance is implemented to reduce overshoots of the system. Then, the Lyapunov stability of the proposed method is proved theoretically. Finally, the effectiveness and superiority of the proposed control method are verified by simulation experiments.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051584","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A fixed-time global sliding mode control with prescribed performance is proposed for the varying center of mass parallel robot mobile platform with model uncertainties and external disturbances to improve the global robustness and convergence performance of the model, and reduce overshoots. Firstly, kinematic and dynamic models of the parallel robot mobile platform with a varying center of mass are established. A reference velocity controller for the mobile platform system's outer loop is designed using the back-stepping method, which provides the expected reference velocity for the inner loop controller. Secondly, to improve the global robustness and convergence performance of the system, a fixed-time global sliding mode control algorithm in the inner loop of the system is designed to eliminate the reaching phase of sliding mode control and ensure that the system converges quickly within a fixed time. Meanwhile, by designing a performance function to constrain the system errors within the performance boundary further, the fixed-time global sliding mode control with prescribed performance is implemented to reduce overshoots of the system. Then, the Lyapunov stability of the proposed method is proved theoretically. Finally, the effectiveness and superiority of the proposed control method are verified by simulation experiments.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.