Filament Type Recognition for Additive Manufacturing Using a Spectroscopy Sensor and Machine Learning.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-02 DOI:10.3390/s25051543
Gorkem Anil Al, Uriel Martinez-Hernandez
{"title":"Filament Type Recognition for Additive Manufacturing Using a Spectroscopy Sensor and Machine Learning.","authors":"Gorkem Anil Al, Uriel Martinez-Hernandez","doi":"10.3390/s25051543","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel approach for filament recognition in fused filament fabrication (FFF) processes using a multi-spectral spectroscopy sensor module combined with machine learning techniques. The sensor module measures 18 wavelengths spanning the visible to near-infrared spectra, with a custom-designed shroud to ensure systematic data collection. Filament samples include polylactic acid (PLA), thermoplastic polyurethane (TPU), thermoplastic copolyester (TPC), carbon fibre, acrylonitrile butadiene styrene (ABS), and ABS blended with Carbon fibre. Data are collected using the Triad Spectroscopy module AS7265x (composed of AS72651, AS72652, AS72653 sensor units) positioned at three measurement distances (12 mm, 16 mm, 20 mm) to evaluate recognition performance under varying configurations. Machine learning models, including k-Nearest Neighbors (kNN), Logistic Regression, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP), are employed with hyperparameter tuning applied to optimise classification accuracy. Results show that the data collected on the AS72651 sensor, paired with the SVM model, achieves the highest accuracy of 98.95% at a 20 mm measurement distance. This work introduces a compact, high-accuracy filament recognition module that can enhance the autonomy of multi-material 3D printing by dynamically identifying and switching between different filaments, optimising printing parameters for each material, and expanding the versatility of additive manufacturing applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902676/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051543","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel approach for filament recognition in fused filament fabrication (FFF) processes using a multi-spectral spectroscopy sensor module combined with machine learning techniques. The sensor module measures 18 wavelengths spanning the visible to near-infrared spectra, with a custom-designed shroud to ensure systematic data collection. Filament samples include polylactic acid (PLA), thermoplastic polyurethane (TPU), thermoplastic copolyester (TPC), carbon fibre, acrylonitrile butadiene styrene (ABS), and ABS blended with Carbon fibre. Data are collected using the Triad Spectroscopy module AS7265x (composed of AS72651, AS72652, AS72653 sensor units) positioned at three measurement distances (12 mm, 16 mm, 20 mm) to evaluate recognition performance under varying configurations. Machine learning models, including k-Nearest Neighbors (kNN), Logistic Regression, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP), are employed with hyperparameter tuning applied to optimise classification accuracy. Results show that the data collected on the AS72651 sensor, paired with the SVM model, achieves the highest accuracy of 98.95% at a 20 mm measurement distance. This work introduces a compact, high-accuracy filament recognition module that can enhance the autonomy of multi-material 3D printing by dynamically identifying and switching between different filaments, optimising printing parameters for each material, and expanding the versatility of additive manufacturing applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信