{"title":"Hierarchical Reinforcement Learning for Quadrupedal Robots: Efficient Object Manipulation in Constrained Environments.","authors":"David Azimi, Reza Hoseinnezhad","doi":"10.3390/s25051565","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a hierarchical reinforcement learning (RL) framework tailored to object manipulation tasks by quadrupedal robots, emphasizing their real-world deployment. The proposed approach adopts a sensor-driven control structure capable of addressing challenges in dense and cluttered environments filled with walls and obstacles. A novel reward function is central to the method, incorporating sensor-based obstacle observations to optimize the decision-making. This design minimizes the computational demands while maintaining adaptability and robust functionality. Simulated trials conducted in NVIDIA Isaac Sim, utilizing ANYbotics quadrupedal robots, demonstrated a high manipulation accuracy, with a mean positioning error of 11 cm across object-target distances of up to 10 m. Furthermore, the RL framework effectively integrates path planning in complex environments, achieving energy-efficient and stable operations. These findings establish the framework as a promising approach for advanced robotics requiring versatility, efficiency, and practical deployability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902496/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051565","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a hierarchical reinforcement learning (RL) framework tailored to object manipulation tasks by quadrupedal robots, emphasizing their real-world deployment. The proposed approach adopts a sensor-driven control structure capable of addressing challenges in dense and cluttered environments filled with walls and obstacles. A novel reward function is central to the method, incorporating sensor-based obstacle observations to optimize the decision-making. This design minimizes the computational demands while maintaining adaptability and robust functionality. Simulated trials conducted in NVIDIA Isaac Sim, utilizing ANYbotics quadrupedal robots, demonstrated a high manipulation accuracy, with a mean positioning error of 11 cm across object-target distances of up to 10 m. Furthermore, the RL framework effectively integrates path planning in complex environments, achieving energy-efficient and stable operations. These findings establish the framework as a promising approach for advanced robotics requiring versatility, efficiency, and practical deployability.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.