Gabriele Rescio, Elisa Sciurti, Lucia Giampetruzzi, Anna Maria Carluccio, Luca Francioso, Alessandro Leone
{"title":"Preliminary Study on Wearable Smart Socks with Hydrogel Electrodes for Surface Electromyography-Based Muscle Activity Assessment.","authors":"Gabriele Rescio, Elisa Sciurti, Lucia Giampetruzzi, Anna Maria Carluccio, Luca Francioso, Alessandro Leone","doi":"10.3390/s25051618","DOIUrl":null,"url":null,"abstract":"<p><p>Surface electromyography (sEMG) is increasingly important for prevention, diagnosis, and rehabilitation in healthcare. The continuous monitoring of muscle electrical activity enables the detection of abnormal events, but existing sEMG systems often rely on disposable pre-gelled electrodes that can cause skin irritation and require precise placement by trained personnel. Wearable sEMG systems integrating textile electrodes have been proposed to improve usability; however, they often suffer from poor skin-electrode coupling, leading to higher impedance, motion artifacts, and reduced signal quality. To address these limitations, we propose a preliminary model of smart socks, integrating biocompatible hybrid polymer electrodes positioned over the target muscles. Compared with commercial Ag/AgCl electrodes, these hybrid electrodes ensure lower the skin-electrode impedance, enhancing signal acquisition (19.2 ± 3.1 kΩ vs. 27.8 ± 4.5 kΩ for Ag/AgCl electrodes). Moreover, to the best of our knowledge, this is the first wearable system incorporating hydrogel-based electrodes in a sock specifically designed for the analysis of lower limb muscles, which are crucial for evaluating conditions such as sarcopenia, fall risk, and gait anomalies. The system incorporates a lightweight, wireless commercial module for data pre-processing and transmission. sEMG signals from the Gastrocnemius and Tibialis muscles were analyzed, demonstrating a strong correlation (R = 0.87) between signals acquired with the smart socks and those obtained using commercial Ag/AgCl electrodes. Future studies will further validate its long-term performance under real-world conditions and with a larger dataset.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902426/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051618","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface electromyography (sEMG) is increasingly important for prevention, diagnosis, and rehabilitation in healthcare. The continuous monitoring of muscle electrical activity enables the detection of abnormal events, but existing sEMG systems often rely on disposable pre-gelled electrodes that can cause skin irritation and require precise placement by trained personnel. Wearable sEMG systems integrating textile electrodes have been proposed to improve usability; however, they often suffer from poor skin-electrode coupling, leading to higher impedance, motion artifacts, and reduced signal quality. To address these limitations, we propose a preliminary model of smart socks, integrating biocompatible hybrid polymer electrodes positioned over the target muscles. Compared with commercial Ag/AgCl electrodes, these hybrid electrodes ensure lower the skin-electrode impedance, enhancing signal acquisition (19.2 ± 3.1 kΩ vs. 27.8 ± 4.5 kΩ for Ag/AgCl electrodes). Moreover, to the best of our knowledge, this is the first wearable system incorporating hydrogel-based electrodes in a sock specifically designed for the analysis of lower limb muscles, which are crucial for evaluating conditions such as sarcopenia, fall risk, and gait anomalies. The system incorporates a lightweight, wireless commercial module for data pre-processing and transmission. sEMG signals from the Gastrocnemius and Tibialis muscles were analyzed, demonstrating a strong correlation (R = 0.87) between signals acquired with the smart socks and those obtained using commercial Ag/AgCl electrodes. Future studies will further validate its long-term performance under real-world conditions and with a larger dataset.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.