{"title":"Fault Diagnosis Method for Centrifugal Pumps in Nuclear Power Plants Based on a Multi-Scale Convolutional Self-Attention Network.","authors":"Chen Li, Xinkai Liu, Hang Wang, Minjun Peng","doi":"10.3390/s25051589","DOIUrl":null,"url":null,"abstract":"<p><p>The health status of rotating machinery equipment in nuclear power plants is of paramount importance for ensuring the overall normal operation of the power plant system. In particular, significant failures in large rotating machinery equipment, such as main pumps, pose critical safety hazards to the system. Therefore, this paper takes pump equipment as a representative of rotating machinery in nuclear power plants and proposes a fault diagnosis method based on a multi-scale convolutional self-attention network for three types of faults: outer ring fracture, inner ring fracture, and rolling element pitting corrosion. Within the multi-scale convolutional self-attention network, a multi-scale hybrid feature complementarity mechanism is introduced. This mechanism leverages an adaptive encoder to capture deep feature information from the acoustic signals of rolling bearings and constructs a hybrid-scale feature set based on deep features and original signal characteristics in the time-frequency domain. This approach enriches the fault information present in the feature set and establishes a nonlinear mapping relationship between fault features and rolling bearing faults. The results demonstrate that, without significantly increasing model complexity or the volume of feature data, this method achieves a substantial increase in fault diagnosis accuracy, exceeding 99.5% under both vibration signal and acoustic signal conditions.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051589","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The health status of rotating machinery equipment in nuclear power plants is of paramount importance for ensuring the overall normal operation of the power plant system. In particular, significant failures in large rotating machinery equipment, such as main pumps, pose critical safety hazards to the system. Therefore, this paper takes pump equipment as a representative of rotating machinery in nuclear power plants and proposes a fault diagnosis method based on a multi-scale convolutional self-attention network for three types of faults: outer ring fracture, inner ring fracture, and rolling element pitting corrosion. Within the multi-scale convolutional self-attention network, a multi-scale hybrid feature complementarity mechanism is introduced. This mechanism leverages an adaptive encoder to capture deep feature information from the acoustic signals of rolling bearings and constructs a hybrid-scale feature set based on deep features and original signal characteristics in the time-frequency domain. This approach enriches the fault information present in the feature set and establishes a nonlinear mapping relationship between fault features and rolling bearing faults. The results demonstrate that, without significantly increasing model complexity or the volume of feature data, this method achieves a substantial increase in fault diagnosis accuracy, exceeding 99.5% under both vibration signal and acoustic signal conditions.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.