Luiz H N Rodrigues, Carlos F M Almeida, Nelson Kagan, Luiz H L Rosa, Milana L Dos Santos
{"title":"Co-Simulation of Interconnection Between Smart Power Grid and Smart Cities Platform via Massive Machine-Type Communication.","authors":"Luiz H N Rodrigues, Carlos F M Almeida, Nelson Kagan, Luiz H L Rosa, Milana L Dos Santos","doi":"10.3390/s25051517","DOIUrl":null,"url":null,"abstract":"<p><p>With the advent of Industry 5.0, the electrical sector has been endowed with intelligent devices that are propelling high penetration of distributed energy microgeneration, VPP, smart buildings, and smart plants and imposing new challenges on the sector. This new environment requires a smarter network, including transforming the simple electricity customer into a \"smart customer\" who values the quality of energy and its rational use. The SPG (smart power grid) is the perfect solution for meeting these needs. It is crucial to understand energy use to guarantee quality of service and meet data security requirements. The use of simulations to map the behavior of complex infrastructures is the best strategy because it overcomes the limitations of traditional analytical solutions. This article presents the ICT laboratory structure developed within the Department of Electrical Engineering of the Polytechnic School of the Universidade de São Paulo (USP). It is based on an architecture that utilizes LTE/EPC wireless technology (4G, 5G, and B5G) to enable machine-to-machine communication (mMTC) between SPG elements using edge computing (MEC) resources and those of smart city platforms. We evaluate this proposal through simulations using data from real and emulated equipment and co-simulations shared by SPG laboratories at POLI-USP. Finally, we present the preliminary results of integration of the power laboratory, network simulation (ns-3), and a smart city platform (InterSCity) for validation and testing of the architecture.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051517","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the advent of Industry 5.0, the electrical sector has been endowed with intelligent devices that are propelling high penetration of distributed energy microgeneration, VPP, smart buildings, and smart plants and imposing new challenges on the sector. This new environment requires a smarter network, including transforming the simple electricity customer into a "smart customer" who values the quality of energy and its rational use. The SPG (smart power grid) is the perfect solution for meeting these needs. It is crucial to understand energy use to guarantee quality of service and meet data security requirements. The use of simulations to map the behavior of complex infrastructures is the best strategy because it overcomes the limitations of traditional analytical solutions. This article presents the ICT laboratory structure developed within the Department of Electrical Engineering of the Polytechnic School of the Universidade de São Paulo (USP). It is based on an architecture that utilizes LTE/EPC wireless technology (4G, 5G, and B5G) to enable machine-to-machine communication (mMTC) between SPG elements using edge computing (MEC) resources and those of smart city platforms. We evaluate this proposal through simulations using data from real and emulated equipment and co-simulations shared by SPG laboratories at POLI-USP. Finally, we present the preliminary results of integration of the power laboratory, network simulation (ns-3), and a smart city platform (InterSCity) for validation and testing of the architecture.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.