Development, biological evaluation, and molecular modelling of novel isocytosine and guanidine derivatives as BACE1 inhibitors using a fragment growing strategy.

IF 4.1 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Asmaa M Atta, Nouran Rihan, Ahmad M Abdelwaly, Mohamed S Nafie, Mohamed S Elgawish, Samia M Moustafa, Mohamed A Helal, Khaled M Darwish
{"title":"Development, biological evaluation, and molecular modelling of novel isocytosine and guanidine derivatives as BACE1 inhibitors using a fragment growing strategy.","authors":"Asmaa M Atta, Nouran Rihan, Ahmad M Abdelwaly, Mohamed S Nafie, Mohamed S Elgawish, Samia M Moustafa, Mohamed A Helal, Khaled M Darwish","doi":"10.1039/d4md00698d","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative condition characterized by significant synaptic loss and neuronal death in brain regions critical for cognitive functions. The disease is characterized by the formation of amyloid plaques, which are extracellular constructs consisting mainly of aggregated Aβ42. The latter is a peptide formed by the proteolytic cleavage of β-amyloid precursor protein (APP) by two enzymes, β- and γ-secretase. Therefore, inhibition of the aspartic protease β-secretase (BACE1) is considered a promising therapeutic approach for the treatment and prevention of Alzheimer's disease. Unfortunately, a limited number of β-secretase inhibitors have reached human trials and eventually failed due to inconclusive therapeutic and/or safety profiles. In this study, we developed drug-like molecules with a β-secretase inhibitory activity using a fragment growing strategy on isocytosine and acyl guanidine warheads. Our approach is based on optimizing the hydrophobic part of the molecules to obtain a conformationally restrained scaffold complementary to the hydrophobic pockets within the enzyme active site. We developed 32 compounds with promising <i>in vitro</i> inhibitory activity against BACE1 down to sub-micromolar IC<sub>50</sub>. Docking simulation studies were performed to understand the mode of binding of the prepared compounds. We demonstrated that compounds with superior activities, such as 16b and 16g, are able to provide the best balance between the steric shape and position of the polar substituent for achieving preferential anchoring into the S1, S3, S1', and S2' sub-pockets. Further, <i>in vivo</i> characterization of selected drug-like candidates of the benzimidazole series AMK-IV, namely 16a and 16k, demonstrated their ability to reduce oxidation stress and their safety within brain and liver tissues.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00698d","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a neurodegenerative condition characterized by significant synaptic loss and neuronal death in brain regions critical for cognitive functions. The disease is characterized by the formation of amyloid plaques, which are extracellular constructs consisting mainly of aggregated Aβ42. The latter is a peptide formed by the proteolytic cleavage of β-amyloid precursor protein (APP) by two enzymes, β- and γ-secretase. Therefore, inhibition of the aspartic protease β-secretase (BACE1) is considered a promising therapeutic approach for the treatment and prevention of Alzheimer's disease. Unfortunately, a limited number of β-secretase inhibitors have reached human trials and eventually failed due to inconclusive therapeutic and/or safety profiles. In this study, we developed drug-like molecules with a β-secretase inhibitory activity using a fragment growing strategy on isocytosine and acyl guanidine warheads. Our approach is based on optimizing the hydrophobic part of the molecules to obtain a conformationally restrained scaffold complementary to the hydrophobic pockets within the enzyme active site. We developed 32 compounds with promising in vitro inhibitory activity against BACE1 down to sub-micromolar IC50. Docking simulation studies were performed to understand the mode of binding of the prepared compounds. We demonstrated that compounds with superior activities, such as 16b and 16g, are able to provide the best balance between the steric shape and position of the polar substituent for achieving preferential anchoring into the S1, S3, S1', and S2' sub-pockets. Further, in vivo characterization of selected drug-like candidates of the benzimidazole series AMK-IV, namely 16a and 16k, demonstrated their ability to reduce oxidation stress and their safety within brain and liver tissues.

基于片段生长策略的新型异胞嘧啶和胍衍生物作为BACE1抑制剂的开发、生物学评价和分子建模。
阿尔茨海默病(AD)是一种神经退行性疾病,其特征是大脑中关键认知功能区域的突触丧失和神经元死亡。该疾病的特征是淀粉样斑块的形成,淀粉样斑块是主要由聚集的Aβ42组成的细胞外结构。后者是由β-和γ-分泌酶两种酶对β-淀粉样前体蛋白(APP)进行蛋白水解裂解而形成的肽。因此,抑制天冬氨酸蛋白酶β-分泌酶(BACE1)被认为是治疗和预防阿尔茨海默病的一种有前景的治疗方法。不幸的是,有限数量的β分泌酶抑制剂已经进入人体试验,最终由于不确定的治疗和/或安全性而失败。在这项研究中,我们利用片段生长策略在异胞嘧啶和酰基胍弹头上开发了具有β分泌酶抑制活性的药物样分子。我们的方法是基于优化分子的疏水部分,以获得一个构象受限的支架,与酶活性位点内的疏水口袋互补。我们开发了32种化合物,它们对BACE1的体外抑制活性低至亚微摩尔IC50。通过对接模拟研究了解所制备化合物的结合模式。我们证明了具有优越活性的化合物,如16b和16g,能够在极性取代基的空间形状和位置之间提供最佳平衡,以实现优先锚定在S1, S3, S1‘和S2’子口袋中。此外,对苯并咪唑系列AMK-IV的候选药物(即16a和16k)的体内表征表明,它们具有降低氧化应激的能力,并且在脑和肝组织中具有安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信