Application of Zeolite-Based Materials for Chemical Sensing of VOCs.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-06 DOI:10.3390/s25051634
Dusan Stosic, Vladimir Zholobenko
{"title":"Application of Zeolite-Based Materials for Chemical Sensing of VOCs.","authors":"Dusan Stosic, Vladimir Zholobenko","doi":"10.3390/s25051634","DOIUrl":null,"url":null,"abstract":"<p><p>Considerable levels of pollution produced by urbanization and industrial development have established a need for monitoring the presence of harmful compounds and the assessment of environmental risks to provide a basis for timely reaction and the prevention of disastrous consequences. Chemical sensors offer a reasonable solution; however, the desired properties, such as high sensitivity, selectivity, stability and reliability, ease of fabrication, and cost-effectiveness, are not always easily met. To this end, the incorporation of zeolites in sensor materials has attracted considerable attention. Such hybrid sensor materials exhibit excellent performances due to the unique properties of zeolites, which have been successfully utilized in gas-sensing applications. In this review, we discuss recent findings in the area of the application of zeolites as sensor materials, focusing on the detection of volatile organic compounds and highlighting the role of zeolite frameworks and the proposed mechanisms in the sensing process. Finally, we consider possible future directions for the development of zeolite-based sensor technology, including the application of hierarchical materials, nanosized zeolites, and 2D material-zeolite heterostructures that would fulfill industrial and environmental demands.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051634","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Considerable levels of pollution produced by urbanization and industrial development have established a need for monitoring the presence of harmful compounds and the assessment of environmental risks to provide a basis for timely reaction and the prevention of disastrous consequences. Chemical sensors offer a reasonable solution; however, the desired properties, such as high sensitivity, selectivity, stability and reliability, ease of fabrication, and cost-effectiveness, are not always easily met. To this end, the incorporation of zeolites in sensor materials has attracted considerable attention. Such hybrid sensor materials exhibit excellent performances due to the unique properties of zeolites, which have been successfully utilized in gas-sensing applications. In this review, we discuss recent findings in the area of the application of zeolites as sensor materials, focusing on the detection of volatile organic compounds and highlighting the role of zeolite frameworks and the proposed mechanisms in the sensing process. Finally, we consider possible future directions for the development of zeolite-based sensor technology, including the application of hierarchical materials, nanosized zeolites, and 2D material-zeolite heterostructures that would fulfill industrial and environmental demands.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信