Jiachi Hong, Afshan A Nanji, Richard D Stutzman, Winston D Chamberlain, Xubo Song, David Huang, Yan Li
{"title":"Artificial Intelligence-Driven Detection of LASIK Using Corneal Optical Coherence Tomography Maps.","authors":"Jiachi Hong, Afshan A Nanji, Richard D Stutzman, Winston D Chamberlain, Xubo Song, David Huang, Yan Li","doi":"10.1167/tvst.14.3.17","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To train and validate a convolutional neural network (CNN) to detect the history of laser-assisted in situ keratomileusis (LASIK) surgeries using corneal optical coherence tomography (OCT) maps.</p><p><strong>Methods: </strong>Five corneal OCT maps (pachymetry, epithelial thickness, posterior mean curvature, anterior axial power, and anterior stroma reflectance) were utilized as the input of a lightweight CNN model. OCT scans of healthy volunteers and patients who had undergone myopic or hyperopic LASIK were included. Repeated fivefold cross-validation was used to train and evaluate the proposed CNN. In addition, a separate group of post-LASIK participants, who were not included in the cross-validation, was used for out-of-sample testing to assess the CNN model performance.</p><p><strong>Results: </strong>In the cross-validation, the proposed CNN model achieved an overall balanced accuracy of 90.2% ± 3.6% with 93.5% ± 5.2% sensitivity and 97.8% ± 1.7% area under the receiver operating characteristic curve (AUC) in detecting myopic LASIK and 90.2% ± 5.8% sensitivity and 98.2% ± 1.9% AUC in identifying the hyperopic LASIK. In the out-of-sample test, all eyes were classified correctively.</p><p><strong>Conclusions: </strong>The lightweight CNN model with corneal OCT maps provides a useful tool for detecting LASIK history.</p><p><strong>Translational relevance: </strong>Artificial intelligence-assisted OCT may offer better management for patients with LASIK history who need cataract surgeries.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 3","pages":"17"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.3.17","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To train and validate a convolutional neural network (CNN) to detect the history of laser-assisted in situ keratomileusis (LASIK) surgeries using corneal optical coherence tomography (OCT) maps.
Methods: Five corneal OCT maps (pachymetry, epithelial thickness, posterior mean curvature, anterior axial power, and anterior stroma reflectance) were utilized as the input of a lightweight CNN model. OCT scans of healthy volunteers and patients who had undergone myopic or hyperopic LASIK were included. Repeated fivefold cross-validation was used to train and evaluate the proposed CNN. In addition, a separate group of post-LASIK participants, who were not included in the cross-validation, was used for out-of-sample testing to assess the CNN model performance.
Results: In the cross-validation, the proposed CNN model achieved an overall balanced accuracy of 90.2% ± 3.6% with 93.5% ± 5.2% sensitivity and 97.8% ± 1.7% area under the receiver operating characteristic curve (AUC) in detecting myopic LASIK and 90.2% ± 5.8% sensitivity and 98.2% ± 1.9% AUC in identifying the hyperopic LASIK. In the out-of-sample test, all eyes were classified correctively.
Conclusions: The lightweight CNN model with corneal OCT maps provides a useful tool for detecting LASIK history.
Translational relevance: Artificial intelligence-assisted OCT may offer better management for patients with LASIK history who need cataract surgeries.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.