Antonio Mariscal-Castilla, Markus Piller, Jerome Alozy, Rafael Ballabriga, Michael Campbell, Oscar de la Torre, David Gascón, Sergio Gómez, David Heathcote, Joan Mauricio, Dennis Milesevic, Andreu Sanuy, Claire Vallance, Daniel Guberman
{"title":"A Sensor Employing an Array of Silicon Photomultipliers for Detection of keV Ions in Time-of-Flight Mass Spectrometry.","authors":"Antonio Mariscal-Castilla, Markus Piller, Jerome Alozy, Rafael Ballabriga, Michael Campbell, Oscar de la Torre, David Gascón, Sergio Gómez, David Heathcote, Joan Mauricio, Dennis Milesevic, Andreu Sanuy, Claire Vallance, Daniel Guberman","doi":"10.3390/s25051585","DOIUrl":null,"url":null,"abstract":"<p><p>Pixellated scintillation detectors have the potential to overcome several limitations of conventional microchannel-plate-based detectors employed in time-of-flight mass spectrometry (ToF-MS), such as extending detector lifetime, reducing vacuum requirements, or increasing the ion throughput. We have developed a prototype comprising a fast organic scintillator (Exalite 404) coupled to an array of 16 silicon photomultipliers (SiPMs), with read-out electronics based on the FastIC application-specific integrated circuit (ASIC). Each SiPM signal processed by FastIC is fed into its own time-to-digital converter (TDC). The dead time of a single channel can be as short as ∼20 ns. As a result, our system have the potential to process ion rates above 109 cm<sup>-2</sup> s<sup>-1</sup>. We have evaluated the performance of our prototype using a velocity-map imaging ToF-MS instrument, recording the time-of-flight mass spectra of C<sub>3</sub>H<sub>6</sub> and CF<sub>3</sub>I samples. We achieved time resolutions of (3.3±0.1) and (2.5±0.2) ns FWHM for ions of mass-to-charge ratio (m/z) values of 196 and 18, respectively. This corresponds to a mass resolution of ∼1000 for m/z<200, which we found to be dominated by the spread in ion arrival times.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051585","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pixellated scintillation detectors have the potential to overcome several limitations of conventional microchannel-plate-based detectors employed in time-of-flight mass spectrometry (ToF-MS), such as extending detector lifetime, reducing vacuum requirements, or increasing the ion throughput. We have developed a prototype comprising a fast organic scintillator (Exalite 404) coupled to an array of 16 silicon photomultipliers (SiPMs), with read-out electronics based on the FastIC application-specific integrated circuit (ASIC). Each SiPM signal processed by FastIC is fed into its own time-to-digital converter (TDC). The dead time of a single channel can be as short as ∼20 ns. As a result, our system have the potential to process ion rates above 109 cm-2 s-1. We have evaluated the performance of our prototype using a velocity-map imaging ToF-MS instrument, recording the time-of-flight mass spectra of C3H6 and CF3I samples. We achieved time resolutions of (3.3±0.1) and (2.5±0.2) ns FWHM for ions of mass-to-charge ratio (m/z) values of 196 and 18, respectively. This corresponds to a mass resolution of ∼1000 for m/z<200, which we found to be dominated by the spread in ion arrival times.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.