An Iterative Deflectometry Method of Reconstruction of Separate Specular Surfaces.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-02 DOI:10.3390/s25051549
Cheng Liu, Jianhua Liu, Yanming Xing, Xiaohui Ao, Hongda Shen, Chunguang Yang
{"title":"An Iterative Deflectometry Method of Reconstruction of Separate Specular Surfaces.","authors":"Cheng Liu, Jianhua Liu, Yanming Xing, Xiaohui Ao, Hongda Shen, Chunguang Yang","doi":"10.3390/s25051549","DOIUrl":null,"url":null,"abstract":"<p><p>Phase measuring deflectometry (PMD) plays a more and more significant role in the measurement of specular surfaces. However, most of the deflectometric methods are only suitable for continuous specular surfaces, but not for the discontinuous surfaces. In this work, with the hardware of stereoscopic PMD, a mechanism is introduced so that a specular surface can be reconstructed iteratively with the pre-known coordinate of a reflecting point. Based on the mechanism and the excellent local properties of the B-spline surface, a reconstruction method suitable for both kinds of specular surfaces is proposed. Meanwhile, to resist the noise of the single point, this work mathematically analyzes the mechanism of the method. With the mathematical conclusion, the sparse point cloud solved using stereoscopic PMD is employed to scale the B-spline surfaces, improving the accuracy of reconstruction. Simulated and actual experiments are carried out, and the results show high accuracy and robustness of the PMD system and the reconstruction method.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902674/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051549","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Phase measuring deflectometry (PMD) plays a more and more significant role in the measurement of specular surfaces. However, most of the deflectometric methods are only suitable for continuous specular surfaces, but not for the discontinuous surfaces. In this work, with the hardware of stereoscopic PMD, a mechanism is introduced so that a specular surface can be reconstructed iteratively with the pre-known coordinate of a reflecting point. Based on the mechanism and the excellent local properties of the B-spline surface, a reconstruction method suitable for both kinds of specular surfaces is proposed. Meanwhile, to resist the noise of the single point, this work mathematically analyzes the mechanism of the method. With the mathematical conclusion, the sparse point cloud solved using stereoscopic PMD is employed to scale the B-spline surfaces, improving the accuracy of reconstruction. Simulated and actual experiments are carried out, and the results show high accuracy and robustness of the PMD system and the reconstruction method.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信