AI-Driven Framework for Enhanced and Automated Behavioral Analysis in Morris Water Maze Studies.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-04 DOI:10.3390/s25051564
István Lakatos, Gergő Bogacsovics, Attila Tiba, Dániel Priksz, Béla Juhász, Rita Erdélyi, Zsuzsa Berényi, Ildikó Bácskay, Dóra Ujvárosy, Balázs Harangi
{"title":"AI-Driven Framework for Enhanced and Automated Behavioral Analysis in Morris Water Maze Studies.","authors":"István Lakatos, Gergő Bogacsovics, Attila Tiba, Dániel Priksz, Béla Juhász, Rita Erdélyi, Zsuzsa Berényi, Ildikó Bácskay, Dóra Ujvárosy, Balázs Harangi","doi":"10.3390/s25051564","DOIUrl":null,"url":null,"abstract":"<p><p>The Morris Water Maze (MWM) is a widely used behavioral test to assess the spatial learning and memory of animals, particularly valuable in studying neurodegenerative disorders such as Alzheimer's disease. Traditional methods for analyzing MWM experiments often face limitations in capturing the complexity of animal behaviors. In this study, we present a novel AI-based automated framework to process and evaluate MWM test videos, aiming to enhance behavioral analysis through machine learning. Our pipeline involves video preprocessing, animal detection using convolutional neural networks (CNNs), trajectory tracking, and postprocessing to derive detailed behavioral features. We propose concentric circle segmentation of the pool next to the quadrant-based division, and we extract 32 behavioral metrics for each zone, which are employed in classification tasks to differentiate between younger and older animals. Several machine learning classifiers, including random forest and neural networks, are evaluated, with feature selection techniques applied to improve the classification accuracy. Our results demonstrate a significant improvement in classification performance, particularly through the integration of feature sets derived from concentric zone analyses. This automated approach offers a robust solution for MWM data processing, providing enhanced precision and reliability, which is critical for the study of neurodegenerative disorders.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051564","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Morris Water Maze (MWM) is a widely used behavioral test to assess the spatial learning and memory of animals, particularly valuable in studying neurodegenerative disorders such as Alzheimer's disease. Traditional methods for analyzing MWM experiments often face limitations in capturing the complexity of animal behaviors. In this study, we present a novel AI-based automated framework to process and evaluate MWM test videos, aiming to enhance behavioral analysis through machine learning. Our pipeline involves video preprocessing, animal detection using convolutional neural networks (CNNs), trajectory tracking, and postprocessing to derive detailed behavioral features. We propose concentric circle segmentation of the pool next to the quadrant-based division, and we extract 32 behavioral metrics for each zone, which are employed in classification tasks to differentiate between younger and older animals. Several machine learning classifiers, including random forest and neural networks, are evaluated, with feature selection techniques applied to improve the classification accuracy. Our results demonstrate a significant improvement in classification performance, particularly through the integration of feature sets derived from concentric zone analyses. This automated approach offers a robust solution for MWM data processing, providing enhanced precision and reliability, which is critical for the study of neurodegenerative disorders.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信