Adversarial Range Gate Pull-Off Jamming Against Tracking Radar.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-03 DOI:10.3390/s25051553
Yuanhang Wang, Yi Han, Yi Jiang
{"title":"Adversarial Range Gate Pull-Off Jamming Against Tracking Radar.","authors":"Yuanhang Wang, Yi Han, Yi Jiang","doi":"10.3390/s25051553","DOIUrl":null,"url":null,"abstract":"<p><p>Range gate pull-off (RGPO) jamming is an effective method for track deception aimed at radar systems. Nevertheless, enhancing the effectiveness of the jamming strategy continues to pose challenges, restricting the RGPO jamming method from achieving its maximum potential. This paper focuses on addressing the problem of optimizing the strategy for white-box RGPO jamming, serving as a foundational step toward quantitative optimization research on RGPO jamming strategies. In the white-box scenario, it is presumed that the jammer has full knowledge of the target radar's tracking system, encompassing both the choice of tracking method and its parameter configurations. The intricate interactions between the jammer and the tracking radar introduce three primary challenges: <b>(1)</b> Formulating an algebraic expression for the objective function of the jamming strategy optimization is nontrivial; <b>(2)</b> Direct observation of jamming effects from the target radar is challenging; <b>(3)</b> Noise renders the jamming outcomes unpredictable. To tackle these challenges, this study formulates the optimization of the RGPO jamming strategy as an adversarial stochastic simulation optimization (ASSO) problem and introduces a novel solution for the white-box RGPO jamming strategy optimization: a local simulation-assisted particle swarm optimization algorithm with an equal resampling scheme (PSO-ER). The PSO-ER algorithm searches for optimal jamming strategies while utilizing a localized simulation of the tracking radar to evaluate the effectiveness of candidate jamming strategies. Experiments conducted on four benchmark cases confirm that the proposed approach is capable of generating well-tuned strategies for white-box RGPO jamming.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051553","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Range gate pull-off (RGPO) jamming is an effective method for track deception aimed at radar systems. Nevertheless, enhancing the effectiveness of the jamming strategy continues to pose challenges, restricting the RGPO jamming method from achieving its maximum potential. This paper focuses on addressing the problem of optimizing the strategy for white-box RGPO jamming, serving as a foundational step toward quantitative optimization research on RGPO jamming strategies. In the white-box scenario, it is presumed that the jammer has full knowledge of the target radar's tracking system, encompassing both the choice of tracking method and its parameter configurations. The intricate interactions between the jammer and the tracking radar introduce three primary challenges: (1) Formulating an algebraic expression for the objective function of the jamming strategy optimization is nontrivial; (2) Direct observation of jamming effects from the target radar is challenging; (3) Noise renders the jamming outcomes unpredictable. To tackle these challenges, this study formulates the optimization of the RGPO jamming strategy as an adversarial stochastic simulation optimization (ASSO) problem and introduces a novel solution for the white-box RGPO jamming strategy optimization: a local simulation-assisted particle swarm optimization algorithm with an equal resampling scheme (PSO-ER). The PSO-ER algorithm searches for optimal jamming strategies while utilizing a localized simulation of the tracking radar to evaluate the effectiveness of candidate jamming strategies. Experiments conducted on four benchmark cases confirm that the proposed approach is capable of generating well-tuned strategies for white-box RGPO jamming.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信