Analysis of the SlRAF-like B gene family in tomato and the molecular mechanism of SlRAF7 in regulating cold stress resistance.

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Junxiao Li, Qingpeng Li, Fan Wang, Ruoxi Ding, Yixuan Shang, Xiaohui Hu, Songshen Hu
{"title":"Analysis of the SlRAF-like B gene family in tomato and the molecular mechanism of SlRAF7 in regulating cold stress resistance.","authors":"Junxiao Li, Qingpeng Li, Fan Wang, Ruoxi Ding, Yixuan Shang, Xiaohui Hu, Songshen Hu","doi":"10.1016/j.plantsci.2025.112475","DOIUrl":null,"url":null,"abstract":"<p><p>The SlRAF-like B gene family is crucial for the regulation of seed dormancy and response to osmotic stress. In this research, a bioinformatics approach was employed to identify a total of 18 members belonging to the SlRAF-like B gene family within the tomato genome. Phylogenetic analysis has categorized the identified SlRAF-like B genes into four distinct groups, revealing significant differences in conserved motifs and gene structure among the proteins within each cluster. Promoter sequence analysis revealed abundant stress, hormone, and light response elements, suggesting the involvement of SlRAF-like B genes in cold stress responses. RT-qPCR analysis showed that most SlRAF-like B genes are induced by cold stress. A knockout mutant of the SlRAF7 gene, belonging to the SlRAF-like B3 group, was generated and tested under normal and cold stress, demonstrating that SlRAF7 positively regulates cold resistance in tomato plants. Further analysis of antioxidant enzyme activities, expression of related genes, and key cold response genes (ICE1, CBFs, and COR genes) in different genotypes suggests that SlRAF7 may enhance cold resistance by modulating the antioxidant enzyme pathway and the CBF signaling pathway. This study provides initial insights into the physiological and molecular mechanisms that underlie cold stress tolerance in tomato, with a particular focus on the role of the SlRAF7 gene.</p>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":" ","pages":"112475"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plantsci.2025.112475","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The SlRAF-like B gene family is crucial for the regulation of seed dormancy and response to osmotic stress. In this research, a bioinformatics approach was employed to identify a total of 18 members belonging to the SlRAF-like B gene family within the tomato genome. Phylogenetic analysis has categorized the identified SlRAF-like B genes into four distinct groups, revealing significant differences in conserved motifs and gene structure among the proteins within each cluster. Promoter sequence analysis revealed abundant stress, hormone, and light response elements, suggesting the involvement of SlRAF-like B genes in cold stress responses. RT-qPCR analysis showed that most SlRAF-like B genes are induced by cold stress. A knockout mutant of the SlRAF7 gene, belonging to the SlRAF-like B3 group, was generated and tested under normal and cold stress, demonstrating that SlRAF7 positively regulates cold resistance in tomato plants. Further analysis of antioxidant enzyme activities, expression of related genes, and key cold response genes (ICE1, CBFs, and COR genes) in different genotypes suggests that SlRAF7 may enhance cold resistance by modulating the antioxidant enzyme pathway and the CBF signaling pathway. This study provides initial insights into the physiological and molecular mechanisms that underlie cold stress tolerance in tomato, with a particular focus on the role of the SlRAF7 gene.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信