The Effects of Polyphenols on Doxorubicin-Induced Nephrotoxicity by Modulating Inflammatory Cytokines, Apoptosis, Oxidative Stress, and Oxidative DNA Damage.
Lang Wang, Can Wei, Junfeng Jing, Mingmin Shao, Zhen Wang, Bo Wen, Mingming Lu, Zhenzhen Jia, Yanbin Zhang
{"title":"The Effects of Polyphenols on Doxorubicin-Induced Nephrotoxicity by Modulating Inflammatory Cytokines, Apoptosis, Oxidative Stress, and Oxidative DNA Damage.","authors":"Lang Wang, Can Wei, Junfeng Jing, Mingmin Shao, Zhen Wang, Bo Wen, Mingming Lu, Zhenzhen Jia, Yanbin Zhang","doi":"10.1002/ptr.8470","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) is an anthracyclic antibiotic with anti-neoplastic activity that has been found to be a highly effective and commonly used chemotherapeutic agent in the treatment of a variety of solid and hematologic malignancies. However, its effectiveness has been limited by the occurrence of dose-related renal, myocardial, and bone marrow toxicities. The clinical use of DOX is associated with nephrotic syndrome characterized by heavy proteinuria, hypoalbuminemia, and hyperlipidemia. DOX-induced changes in the renal tissue of rats include increased glomerular capillary permeability and tubular atrophy. Several lines of evidence suggest that reactive oxygen species and oxidative stress have been associated with DOX-induced renal damage. The mechanism of DOX-induced nephrotoxicity is believed to be mediated through free radical formation, iron-dependent oxidative damage of biological macromolecules, and membrane lipid peroxidation. Polyphenols are present in high concentration in fruits and vegetables. They have been shown to have potent antioxidant and cytoprotective effects in preventing endothelial apoptosis caused by oxidants. Treatment with polyphenols has been shown to prevent liver damage and suppress overexpression of inducible nitric oxide synthase, which is induced by various inflammatory stimuli. In addition, epidemiological studies have suggested that the intake of polyphenols may be associated with a reduced risk of DOX-induced nephrotoxicity by modulating inflammatory cytokines, apoptosis, oxidative stress, and oxidative DNA damage. Therefore, in the present review, we examined the influence of polyphenols on DOX-induced nephrotoxicity.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Doxorubicin (DOX) is an anthracyclic antibiotic with anti-neoplastic activity that has been found to be a highly effective and commonly used chemotherapeutic agent in the treatment of a variety of solid and hematologic malignancies. However, its effectiveness has been limited by the occurrence of dose-related renal, myocardial, and bone marrow toxicities. The clinical use of DOX is associated with nephrotic syndrome characterized by heavy proteinuria, hypoalbuminemia, and hyperlipidemia. DOX-induced changes in the renal tissue of rats include increased glomerular capillary permeability and tubular atrophy. Several lines of evidence suggest that reactive oxygen species and oxidative stress have been associated with DOX-induced renal damage. The mechanism of DOX-induced nephrotoxicity is believed to be mediated through free radical formation, iron-dependent oxidative damage of biological macromolecules, and membrane lipid peroxidation. Polyphenols are present in high concentration in fruits and vegetables. They have been shown to have potent antioxidant and cytoprotective effects in preventing endothelial apoptosis caused by oxidants. Treatment with polyphenols has been shown to prevent liver damage and suppress overexpression of inducible nitric oxide synthase, which is induced by various inflammatory stimuli. In addition, epidemiological studies have suggested that the intake of polyphenols may be associated with a reduced risk of DOX-induced nephrotoxicity by modulating inflammatory cytokines, apoptosis, oxidative stress, and oxidative DNA damage. Therefore, in the present review, we examined the influence of polyphenols on DOX-induced nephrotoxicity.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.