Live-cell synthesis of biocompatible quantum dots.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
An-An Liu, Ran Cui, Xia Zong, Jianhong Jia, Yusi Hu, Jing-Ya Zhao, Dai-Wen Pang
{"title":"Live-cell synthesis of biocompatible quantum dots.","authors":"An-An Liu, Ran Cui, Xia Zong, Jianhong Jia, Yusi Hu, Jing-Ya Zhao, Dai-Wen Pang","doi":"10.1038/s41596-024-01133-5","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum dots (QDs) exhibit fluorescence properties with promising prospects for biomedical applications; however, the QDs synthesized in organic solvents shows poor biocompatibility, limiting their use in biological systems. We developed an approach for synthesizing QDs in live cells by coupling a series of intracellular metabolic pathways in a precise spatial and temporal sequence. We have validated this approach in yeast (Saccharomyces cerevisiae), Staphylococcus aureus, Michigan Cancer Foundation-7 (MCF-7) and Madin-Darby canine kidney (MDCK) cells. The intracellularly synthesized QDs are inherently stable and biocompatible, making them suitable for the direct in situ labeling of cells and cell-derived vesicles. Here, we provide an optimized workflow for the live-cell synthesis of QDs by using S. cerevisiae, S. aureus or MCF-7 cells. In addition, we detail a cell-free aqueous synthetic system (quasi-biosynthesis) containing enzymes, electrolytes, peptides and coenzymes, which closely mimics the intracellular synthetic conditions used in our cell culture system. In this solution, we synthesize biocompatible ultrasmall QDs that are easier to purify and characterize than those synthesized in cells. The live-cell-synthesized QDs can be used for bioimaging and microvesicle detection, whereas the quasi-biosynthesized QDs are suitable for applications such as biodetection, biolabeling and real-time imaging. The procedure can be completed in 3-4 d for live-cell QD synthesis and 2 h for the quasi-biosynthesis of QDs. The procedure is suitable for users with expertise in chemistry, biology, materials science and synthetic biology. This approach encourages interested researchers to engage in the field of QDs and develop further biomedical applications.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01133-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum dots (QDs) exhibit fluorescence properties with promising prospects for biomedical applications; however, the QDs synthesized in organic solvents shows poor biocompatibility, limiting their use in biological systems. We developed an approach for synthesizing QDs in live cells by coupling a series of intracellular metabolic pathways in a precise spatial and temporal sequence. We have validated this approach in yeast (Saccharomyces cerevisiae), Staphylococcus aureus, Michigan Cancer Foundation-7 (MCF-7) and Madin-Darby canine kidney (MDCK) cells. The intracellularly synthesized QDs are inherently stable and biocompatible, making them suitable for the direct in situ labeling of cells and cell-derived vesicles. Here, we provide an optimized workflow for the live-cell synthesis of QDs by using S. cerevisiae, S. aureus or MCF-7 cells. In addition, we detail a cell-free aqueous synthetic system (quasi-biosynthesis) containing enzymes, electrolytes, peptides and coenzymes, which closely mimics the intracellular synthetic conditions used in our cell culture system. In this solution, we synthesize biocompatible ultrasmall QDs that are easier to purify and characterize than those synthesized in cells. The live-cell-synthesized QDs can be used for bioimaging and microvesicle detection, whereas the quasi-biosynthesized QDs are suitable for applications such as biodetection, biolabeling and real-time imaging. The procedure can be completed in 3-4 d for live-cell QD synthesis and 2 h for the quasi-biosynthesis of QDs. The procedure is suitable for users with expertise in chemistry, biology, materials science and synthetic biology. This approach encourages interested researchers to engage in the field of QDs and develop further biomedical applications.

生物相容性量子点的活细胞合成。
量子点具有荧光特性,具有良好的生物医学应用前景。然而,在有机溶剂中合成的量子点表现出较差的生物相容性,限制了它们在生物系统中的应用。我们开发了一种在活细胞中合成量子点的方法,通过在精确的空间和时间序列中耦合一系列细胞内代谢途径。我们已经在酵母(酿酒酵母)、金黄色葡萄球菌、密歇根癌症基金会-7 (MCF-7)和Madin-Darby犬肾(MDCK)细胞中验证了这种方法。细胞内合成的量子点具有固有的稳定性和生物相容性,使其适合于细胞和细胞源性囊泡的直接原位标记。本研究对酿酒葡萄球菌、金黄色葡萄球菌或MCF-7细胞合成量子点的活细胞流程进行了优化。此外,我们详细介绍了一个含酶、电解质、肽和辅酶的无细胞水合成系统(准生物合成),它与我们的细胞培养系统中使用的细胞内合成条件非常相似。在这种溶液中,我们合成了生物相容性的超小量子点,比在细胞中合成的量子点更容易纯化和表征。活细胞合成的量子点可用于生物成像和微泡检测,准生物合成的量子点可用于生物检测、生物标记和实时成像等应用。活细胞QD合成可在3-4天内完成,准生物合成可在2小时内完成。该程序适用于具有化学、生物学、材料科学和合成生物学专业知识的用户。这种方法鼓励感兴趣的研究人员从事量子点领域并进一步开发生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信