IL-11 promotes Ang II-induced autophagy inhibition and mitochondrial dysfunction in atrial fibroblasts.

IF 1.7 4区 生物学 Q3 BIOLOGY
Open Life Sciences Pub Date : 2025-03-11 eCollection Date: 2025-01-01 DOI:10.1515/biol-2025-1063
Jun Wang, Qianyu Zhang, Yunjie Han, Jun Zhang, Nan Zheng
{"title":"IL-11 promotes Ang II-induced autophagy inhibition and mitochondrial dysfunction in atrial fibroblasts.","authors":"Jun Wang, Qianyu Zhang, Yunjie Han, Jun Zhang, Nan Zheng","doi":"10.1515/biol-2025-1063","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate potential targets for the pathogenesis of atrial fibrillation to facilitate the development of effective treatments. Atrial fibroblasts were isolated and stimulated with 1 μM angiotensin-II (Ang-II) for 24 h. To increase interleukin 11 (IL-11) expression, overexpression plasmids were transfected into atrial fibroblasts. The role and the underlying mechanism of IL-11 in atrial fibrillation were examined by immunofluorescence, measurements of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), and western blotting assays. Results demonstrated that IL-11 was upregulated in Ang-II-elicited atrial fibroblasts. Ang-II treatment increases alpha-smooth muscle actin (α-SMA), ROS and MMP levels, and p62 expression but decreases microtubule-associated protein light chain 3 II/I (LC3 II/I) and Beclin-1 expressions in atrial fibroblasts. These effects were further amplified by IL-11 overexpression. Mechanistically, the mammalian target of rapamycin (mTOR) pathway expression was enhanced in Ang-II-induced atrial fibroblasts, which was further elevated by IL-11 upregulation. IL-11 facilitates Ang II-induced differentiation of atrial fibroblasts into myofibroblasts by promoting oxidative stress, mitochondrial dysfunction, and autophagy inhibition through the mTOR pathway.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20251063"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2025-1063","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to investigate potential targets for the pathogenesis of atrial fibrillation to facilitate the development of effective treatments. Atrial fibroblasts were isolated and stimulated with 1 μM angiotensin-II (Ang-II) for 24 h. To increase interleukin 11 (IL-11) expression, overexpression plasmids were transfected into atrial fibroblasts. The role and the underlying mechanism of IL-11 in atrial fibrillation were examined by immunofluorescence, measurements of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), and western blotting assays. Results demonstrated that IL-11 was upregulated in Ang-II-elicited atrial fibroblasts. Ang-II treatment increases alpha-smooth muscle actin (α-SMA), ROS and MMP levels, and p62 expression but decreases microtubule-associated protein light chain 3 II/I (LC3 II/I) and Beclin-1 expressions in atrial fibroblasts. These effects were further amplified by IL-11 overexpression. Mechanistically, the mammalian target of rapamycin (mTOR) pathway expression was enhanced in Ang-II-induced atrial fibroblasts, which was further elevated by IL-11 upregulation. IL-11 facilitates Ang II-induced differentiation of atrial fibroblasts into myofibroblasts by promoting oxidative stress, mitochondrial dysfunction, and autophagy inhibition through the mTOR pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
4.50%
发文量
131
审稿时长
43 weeks
期刊介绍: Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信