Design of sensitive monospecific and bispecific synthetic chimeric T cell receptors for cancer therapy.

IF 23.5 1区 医学 Q1 ONCOLOGY
Sylvain Simon, Grace Bugos, Rachel Prins, Anusha Rajan, Arulmozhi Palani, Kersten Heyer, Andrew Stevens, Longhui Zeng, Kirsten A Thompson, Pinar A Atilla, Jason P Price, Mitchell G Kluesner, Carla A Jaeger-Ruckstuhl, Tamer B Shabaneh, James M Olson, Xiaolei Su, Stanley R Riddell
{"title":"Design of sensitive monospecific and bispecific synthetic chimeric T cell receptors for cancer therapy.","authors":"Sylvain Simon, Grace Bugos, Rachel Prins, Anusha Rajan, Arulmozhi Palani, Kersten Heyer, Andrew Stevens, Longhui Zeng, Kirsten A Thompson, Pinar A Atilla, Jason P Price, Mitchell G Kluesner, Carla A Jaeger-Ruckstuhl, Tamer B Shabaneh, James M Olson, Xiaolei Su, Stanley R Riddell","doi":"10.1038/s43018-025-00927-0","DOIUrl":null,"url":null,"abstract":"<p><p>The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is effective in B cell malignancies. However, the persistence of cancer cells with low levels or complete absence of the target antigen, thereby evading detection by CAR T cells, leads to relapse. These evasion mechanisms highlight the need for receptors with enhanced sensitivity and multispecificity. We introduce a synthetic chimeric T cell receptor (ChTCR) that confers superior antigen sensitivity compared with CARS and previous hybrid TCR designs and is readily adapted for bispecific targeting. ChTCRs replicate the structure of natural TCRs, form classical immune synapses and demonstrate TCR-like signaling. T cells expressing bispecific ChTCRs (Bi-ChTCRs) are more effective than bispecific CAR T cells in eradicating tumors with heterogeneous antigen expression in vivo in female mice. The Bi-ChTCR architecture is resilient and can be designed to target pairs of B cell and multiple myeloma antigens. These findings provide a widely applicable strategy to combat tumor heterogeneity and prevent relapse.</p>","PeriodicalId":18885,"journal":{"name":"Nature cancer","volume":" ","pages":""},"PeriodicalIF":23.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s43018-025-00927-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is effective in B cell malignancies. However, the persistence of cancer cells with low levels or complete absence of the target antigen, thereby evading detection by CAR T cells, leads to relapse. These evasion mechanisms highlight the need for receptors with enhanced sensitivity and multispecificity. We introduce a synthetic chimeric T cell receptor (ChTCR) that confers superior antigen sensitivity compared with CARS and previous hybrid TCR designs and is readily adapted for bispecific targeting. ChTCRs replicate the structure of natural TCRs, form classical immune synapses and demonstrate TCR-like signaling. T cells expressing bispecific ChTCRs (Bi-ChTCRs) are more effective than bispecific CAR T cells in eradicating tumors with heterogeneous antigen expression in vivo in female mice. The Bi-ChTCR architecture is resilient and can be designed to target pairs of B cell and multiple myeloma antigens. These findings provide a widely applicable strategy to combat tumor heterogeneity and prevent relapse.

设计用于癌症治疗的敏感的单特异性和双特异性合成嵌合 T 细胞受体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature cancer
Nature cancer Medicine-Oncology
CiteScore
31.10
自引率
1.80%
发文量
129
期刊介绍: Cancer is a devastating disease responsible for millions of deaths worldwide. However, many of these deaths could be prevented with improved prevention and treatment strategies. To achieve this, it is crucial to focus on accurate diagnosis, effective treatment methods, and understanding the socioeconomic factors that influence cancer rates. Nature Cancer aims to serve as a unique platform for sharing the latest advancements in cancer research across various scientific fields, encompassing life sciences, physical sciences, applied sciences, and social sciences. The journal is particularly interested in fundamental research that enhances our understanding of tumor development and progression, as well as research that translates this knowledge into clinical applications through innovative diagnostic and therapeutic approaches. Additionally, Nature Cancer welcomes clinical studies that inform cancer diagnosis, treatment, and prevention, along with contributions exploring the societal impact of cancer on a global scale. In addition to publishing original research, Nature Cancer will feature Comments, Reviews, News & Views, Features, and Correspondence that hold significant value for the diverse field of cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信