Microfluidic generation of nanoparticles using standing wave induced ultrasonic spray drying†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Holger Bolze, Keiran Mc Carogher and Simon Kuhn
{"title":"Microfluidic generation of nanoparticles using standing wave induced ultrasonic spray drying†","authors":"Holger Bolze, Keiran Mc Carogher and Simon Kuhn","doi":"10.1039/D4NA01012D","DOIUrl":null,"url":null,"abstract":"<p >Spray drying is a well-established process for generating particles for various applications, including pharmaceuticals. In this process, atomization plays a crucial role by defining the size of the droplets and, consequently, particle size. While ultrasound is commonly used to enhance atomization by reducing droplet size, a novel approach has been introduced that utilizes plug flow to generate plugs resonating with an applied ultrasound frequency, triggering surface atomization. This study investigates the applicability of this method for microfluidic atomization and spray drying, particular for pharmaceutical carrier particles. The generated droplets exhibit a size of 7.24 μm and a PDI of 0.18, indicating a monodisperse distribution. The droplets are produced in discrete burst events, enabling an energy-efficient pulsed process with an applied power of less than 1 W. This approach successfully generates lipid nanoparticles with an average size of 140 nm, underscoring its potential for nanoparticle production.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 9","pages":" 2568-2574"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d4na01012d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spray drying is a well-established process for generating particles for various applications, including pharmaceuticals. In this process, atomization plays a crucial role by defining the size of the droplets and, consequently, particle size. While ultrasound is commonly used to enhance atomization by reducing droplet size, a novel approach has been introduced that utilizes plug flow to generate plugs resonating with an applied ultrasound frequency, triggering surface atomization. This study investigates the applicability of this method for microfluidic atomization and spray drying, particular for pharmaceutical carrier particles. The generated droplets exhibit a size of 7.24 μm and a PDI of 0.18, indicating a monodisperse distribution. The droplets are produced in discrete burst events, enabling an energy-efficient pulsed process with an applied power of less than 1 W. This approach successfully generates lipid nanoparticles with an average size of 140 nm, underscoring its potential for nanoparticle production.

利用驻波诱导超声喷雾干燥制备微流控纳米颗粒。
喷雾干燥是一种成熟的过程,用于产生各种应用的颗粒,包括药品。在这个过程中,雾化起着至关重要的作用,它决定了液滴的大小,从而决定了颗粒的大小。虽然超声波通常用于通过减小液滴尺寸来增强雾化,但一种新的方法已经被引入,该方法利用塞流产生与应用超声频率共振的塞,从而触发表面雾化。本研究探讨了该方法在微流控雾化和喷雾干燥中的适用性,特别是对药物载体颗粒的适用性。生成的液滴尺寸为7.24 μm, PDI为0.18,呈单分散分布。液滴在离散的突发事件中产生,使应用功率小于1w的节能脉冲过程成为可能。这种方法成功地生成了平均尺寸为140纳米的脂质纳米颗粒,强调了其生产纳米颗粒的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信