Microfluidic generation of nanoparticles using standing wave induced ultrasonic spray drying.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Holger Bolze, Keiran Mc Carogher, Simon Kuhn
{"title":"Microfluidic generation of nanoparticles using standing wave induced ultrasonic spray drying.","authors":"Holger Bolze, Keiran Mc Carogher, Simon Kuhn","doi":"10.1039/d4na01012d","DOIUrl":null,"url":null,"abstract":"<p><p>Spray drying is a well-established process for generating particles for various applications, including pharmaceuticals. In this process, atomization plays a crucial role by defining the size of the droplets and, consequently, particle size. While ultrasound is commonly used to enhance atomization by reducing droplet size, a novel approach has been introduced that utilizes plug flow to generate plugs resonating with an applied ultrasound frequency, triggering surface atomization. This study investigates the applicability of this method for microfluidic atomization and spray drying, particular for pharmaceutical carrier particles. The generated droplets exhibit a size of 7.24 μm and a PDI of 0.18, indicating a monodisperse distribution. The droplets are produced in discrete burst events, enabling an energy-efficient pulsed process with an applied power of less than 1 W. This approach successfully generates lipid nanoparticles with an average size of 140 nm, underscoring its potential for nanoparticle production.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905916/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na01012d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spray drying is a well-established process for generating particles for various applications, including pharmaceuticals. In this process, atomization plays a crucial role by defining the size of the droplets and, consequently, particle size. While ultrasound is commonly used to enhance atomization by reducing droplet size, a novel approach has been introduced that utilizes plug flow to generate plugs resonating with an applied ultrasound frequency, triggering surface atomization. This study investigates the applicability of this method for microfluidic atomization and spray drying, particular for pharmaceutical carrier particles. The generated droplets exhibit a size of 7.24 μm and a PDI of 0.18, indicating a monodisperse distribution. The droplets are produced in discrete burst events, enabling an energy-efficient pulsed process with an applied power of less than 1 W. This approach successfully generates lipid nanoparticles with an average size of 140 nm, underscoring its potential for nanoparticle production.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信