Magnetization transfer imaging using non-balanced SSFP at ultra-low field.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Sharada Balaji, Neale Wiley, Adam Dvorak, Francesco Padormo, Rui P A G Teixiera, Megan E Poorman, Alex MacKay, Tobias Wood, Adam R Cassidy, Anthony Traboulsee, David K B Li, Irene Vavasour, Steven C R Williams, Sean C L Deoni, Emil Ljungberg, Shannon H Kolind
{"title":"Magnetization transfer imaging using non-balanced SSFP at ultra-low field.","authors":"Sharada Balaji, Neale Wiley, Adam Dvorak, Francesco Padormo, Rui P A G Teixiera, Megan E Poorman, Alex MacKay, Tobias Wood, Adam R Cassidy, Anthony Traboulsee, David K B Li, Irene Vavasour, Steven C R Williams, Sean C L Deoni, Emil Ljungberg, Shannon H Kolind","doi":"10.1002/mrm.30494","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Ultra-low field MRI scanners have the potential to improve health care delivery, both through improved access in areas where there are few MRI scanners and allowing more frequent monitoring of disease progression and treatment response. This may be particularly true in white matter disorders, including leukodystrophies and multiple sclerosis, in which frequent myelin-sensitive imaging, such as magnetization transfer (MT) imaging, might improve clinical care and patient outcomes.</p><p><strong>Methods: </strong>We implemented an on-resonance approach to MT imaging on a commercial point-of-care 64 mT scanner using a non-balanced steady-state free precession sequence. Phantom and in vivo experiments were used to evaluate and optimize the sequence sensitivity and reproducibility, and to demonstrate in vivo performance and inter-site reproducibility.</p><p><strong>Results: </strong>From phantom experiments, T<sub>1</sub> and T<sub>2</sub> effects were determined to have a negligible effect on the differential MT weighting. MT ratio (MTR) values in white matter were 23.1 ± 1.0% from 10 healthy volunteers, with an average reproducibility coefficient of variation of 1.04%. Normal-appearing white matter MTR values in a multiple sclerosis participant (21.5 ± 6.2%) were lower, but with a similar spread of values, compared to an age-matched healthy volunteer (23.3 ± 6.2%).</p><p><strong>Conclusion: </strong>An on-resonance MT imaging approach was developed at 64 mT that can be performed in as little as 4 min. A semi-quantitative myelin-sensitive imaging biomarker at this field strength is available for assessing both myelination and demyelination.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30494","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Ultra-low field MRI scanners have the potential to improve health care delivery, both through improved access in areas where there are few MRI scanners and allowing more frequent monitoring of disease progression and treatment response. This may be particularly true in white matter disorders, including leukodystrophies and multiple sclerosis, in which frequent myelin-sensitive imaging, such as magnetization transfer (MT) imaging, might improve clinical care and patient outcomes.

Methods: We implemented an on-resonance approach to MT imaging on a commercial point-of-care 64 mT scanner using a non-balanced steady-state free precession sequence. Phantom and in vivo experiments were used to evaluate and optimize the sequence sensitivity and reproducibility, and to demonstrate in vivo performance and inter-site reproducibility.

Results: From phantom experiments, T1 and T2 effects were determined to have a negligible effect on the differential MT weighting. MT ratio (MTR) values in white matter were 23.1 ± 1.0% from 10 healthy volunteers, with an average reproducibility coefficient of variation of 1.04%. Normal-appearing white matter MTR values in a multiple sclerosis participant (21.5 ± 6.2%) were lower, but with a similar spread of values, compared to an age-matched healthy volunteer (23.3 ± 6.2%).

Conclusion: An on-resonance MT imaging approach was developed at 64 mT that can be performed in as little as 4 min. A semi-quantitative myelin-sensitive imaging biomarker at this field strength is available for assessing both myelination and demyelination.

超低场非平衡SSFP磁化转移成像。
目的:超低场核磁共振扫描仪有可能改善医疗保健服务,既可以改善在核磁共振扫描仪较少的地区的可及性,也可以更频繁地监测疾病进展和治疗反应。这在白质疾病,包括白质营养不良和多发性硬化症中尤其正确,在这些疾病中,频繁的髓磷脂敏感成像,如磁化转移(MT)成像,可能会改善临床护理和患者预后。方法:我们使用非平衡稳态自由进动序列在商业医疗点64 MT扫描仪上实现了MT成像的非共振方法。通过模拟实验和体内实验来评估和优化序列的灵敏度和可重复性,并验证体内性能和位点间可重复性。结果:通过模拟实验,T1和T2效应对MT权重的影响可以忽略不计。10名健康志愿者脑白质MT比值(MTR)为23.1±1.0%,平均重复性变异系数为1.04%。多发性硬化症参与者的正常白质MTR值(21.5±6.2%)较低,但与年龄匹配的健康志愿者(23.3±6.2%)相比,其值的分布相似。结论:在64mt处开发了一种磁共振MT成像方法,可以在短短4分钟内完成。在这种场强下,半定量髓磷脂敏感成像生物标志物可用于评估髓鞘形成和脱髓鞘形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信