Prioritizing gut microbial SNPs linked to immunotherapy outcomes in NSCLC patients by integrative bioinformatics analysis.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Muhammad Faheem Raziq, Nadeem Khan, Haseeb Manzoor, Hafiz Muhammad Adnan Tariq, Mehak Rafiq, Shahzad Rasool, Masood Ur Rehman Kayani, Lisu Huang
{"title":"Prioritizing gut microbial SNPs linked to immunotherapy outcomes in NSCLC patients by integrative bioinformatics analysis.","authors":"Muhammad Faheem Raziq, Nadeem Khan, Haseeb Manzoor, Hafiz Muhammad Adnan Tariq, Mehak Rafiq, Shahzad Rasool, Masood Ur Rehman Kayani, Lisu Huang","doi":"10.1186/s12967-025-06370-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The human gut microbiome has emerged as a potential modulator of treatment efficacy for different cancers, including non-small cell lung cancer (NSCLC) patients undergoing immune checkpoint inhibitor (ICI) therapy. In this study, we investigated the association of gut microbial variations with response against ICIs by analyzing the gut metagenomes of NSCLC patients.</p><p><strong>Methods: </strong>Strain identification from the publicly available metagenomes of 87 NSCLC patients, treated with nivolumab and collected at three different timepoints (T0, T1, and T2), was performed using StrainPhlAn3. Variant calling and annotations were performed using Snippy and associations between microbial genes and genomic variations with treatment responses were evaluated using MaAsLin2. Supervised machine learning models were developed to prioritize single nucleotide polymorphisms (SNPs) predictive of treatment response. Structural bioinformatics approaches were employed using MUpro, I-Mutant 2.0, CASTp and PyMOL to access the functional impact of prioritized SNPs on protein stability and active site interactions.</p><p><strong>Results: </strong>Our findings revealed the presence of strains for several microbial species (e.g., Lachnospira eligens) exclusively in Responders (R) or Non-responders (NR) (e.g., Parabacteroides distasonis). Variant calling and annotations for the identified strains from R and NR patients highlighted variations in genes (e.g., ftsA, lpdA, and nadB) that were significantly associated with the NR status of patients. Among the developed models, Logistic Regression performed best (accuracy > 90% and AUC ROC > 95%) in prioritizing SNPs in genes that could distinguish R and NR at T0. These SNPs included Ala168Val (lpdA) in Phocaeicola dorei and Tyr233His (lpdA), Leu330Ser (lpdA), and His233Arg (obgE) in Parabacteroides distasonis. Lastly, structural analyses of these prioritized variants in objE and lpdA revealed their involvement in the substrate binding site and an overall reduction in protein stability. This suggests that these variations might likely disrupt substrate interactions and compromise protein stability, thereby impairing normal protein functionality.</p><p><strong>Conclusion: </strong>The integration of metagenomics, machine learning, and structural bioinformatics provides a robust framework for understanding the association between gut microbial variations and treatment response, paving the way for personalized therapies for NSCLC in the future. These findings emphasize the potential clinical implications of microbiome-based biomarkers in guiding patient-specific treatment strategies and improving immunotherapy outcomes.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"343"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11916936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06370-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The human gut microbiome has emerged as a potential modulator of treatment efficacy for different cancers, including non-small cell lung cancer (NSCLC) patients undergoing immune checkpoint inhibitor (ICI) therapy. In this study, we investigated the association of gut microbial variations with response against ICIs by analyzing the gut metagenomes of NSCLC patients.

Methods: Strain identification from the publicly available metagenomes of 87 NSCLC patients, treated with nivolumab and collected at three different timepoints (T0, T1, and T2), was performed using StrainPhlAn3. Variant calling and annotations were performed using Snippy and associations between microbial genes and genomic variations with treatment responses were evaluated using MaAsLin2. Supervised machine learning models were developed to prioritize single nucleotide polymorphisms (SNPs) predictive of treatment response. Structural bioinformatics approaches were employed using MUpro, I-Mutant 2.0, CASTp and PyMOL to access the functional impact of prioritized SNPs on protein stability and active site interactions.

Results: Our findings revealed the presence of strains for several microbial species (e.g., Lachnospira eligens) exclusively in Responders (R) or Non-responders (NR) (e.g., Parabacteroides distasonis). Variant calling and annotations for the identified strains from R and NR patients highlighted variations in genes (e.g., ftsA, lpdA, and nadB) that were significantly associated with the NR status of patients. Among the developed models, Logistic Regression performed best (accuracy > 90% and AUC ROC > 95%) in prioritizing SNPs in genes that could distinguish R and NR at T0. These SNPs included Ala168Val (lpdA) in Phocaeicola dorei and Tyr233His (lpdA), Leu330Ser (lpdA), and His233Arg (obgE) in Parabacteroides distasonis. Lastly, structural analyses of these prioritized variants in objE and lpdA revealed their involvement in the substrate binding site and an overall reduction in protein stability. This suggests that these variations might likely disrupt substrate interactions and compromise protein stability, thereby impairing normal protein functionality.

Conclusion: The integration of metagenomics, machine learning, and structural bioinformatics provides a robust framework for understanding the association between gut microbial variations and treatment response, paving the way for personalized therapies for NSCLC in the future. These findings emphasize the potential clinical implications of microbiome-based biomarkers in guiding patient-specific treatment strategies and improving immunotherapy outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信