Unravelling ecophysiological and molecular adjustments in the photosynthesis-respiration balance during Fusarium graminearum infection in wheat spikes.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Florian Rocher, Pierre Bancal, Alain Fortineau, Géraldine Philippe, Philippe Label, Thierry Langin, Ludovic Bonhomme
{"title":"Unravelling ecophysiological and molecular adjustments in the photosynthesis-respiration balance during Fusarium graminearum infection in wheat spikes.","authors":"Florian Rocher, Pierre Bancal, Alain Fortineau, Géraldine Philippe, Philippe Label, Thierry Langin, Ludovic Bonhomme","doi":"10.1111/ppl.70150","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat responses to F. graminearum result in a deep and sharp reprogramming of a wide range of biological processes, including energy-associated functions and related metabolisms. Although these impacts have been thoroughly described at the molecular scale through proteomics and transcriptomics studies, phenotypic studies are still needed to fill the gap between the observed molecular events and the actual impacts of the disease on the ecophysiological processes. Taking advantage of the gas exchange method, the effects of two F. graminearum strains of contrasting aggressiveness on spike's photosynthesis and respiration-associated processes during an early infection time course were deeply characterized. Besides, an RNAseq-based expression profiling of the genes involved in the photosynthesis, respiration and stomatal movement processes was also performed when plants were challenged using the same two fungal strains. In response to Fusarium head blight, CO<sub>2</sub> assimilation and CO<sub>2</sub> diffusion adjustments matched transcriptomic data, showing altered photosynthetic processes and sharp gene regulations unrelated to symptom development. In contrast, although ecophysiological characterization clearly demonstrated respiration adjustments along with the F. graminearum's infection process, the gene regulations involved were not fully captured transcriptionally. We demonstrated that combining gas exchange methods with transcriptomics is especially effective in enhancing and deepening our understanding of complex physiological adjustments, providing unique and complementary insights that cannot be predicted from a single approach.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70150"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70150","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat responses to F. graminearum result in a deep and sharp reprogramming of a wide range of biological processes, including energy-associated functions and related metabolisms. Although these impacts have been thoroughly described at the molecular scale through proteomics and transcriptomics studies, phenotypic studies are still needed to fill the gap between the observed molecular events and the actual impacts of the disease on the ecophysiological processes. Taking advantage of the gas exchange method, the effects of two F. graminearum strains of contrasting aggressiveness on spike's photosynthesis and respiration-associated processes during an early infection time course were deeply characterized. Besides, an RNAseq-based expression profiling of the genes involved in the photosynthesis, respiration and stomatal movement processes was also performed when plants were challenged using the same two fungal strains. In response to Fusarium head blight, CO2 assimilation and CO2 diffusion adjustments matched transcriptomic data, showing altered photosynthetic processes and sharp gene regulations unrelated to symptom development. In contrast, although ecophysiological characterization clearly demonstrated respiration adjustments along with the F. graminearum's infection process, the gene regulations involved were not fully captured transcriptionally. We demonstrated that combining gas exchange methods with transcriptomics is especially effective in enhancing and deepening our understanding of complex physiological adjustments, providing unique and complementary insights that cannot be predicted from a single approach.

小麦穗部镰刀菌侵染过程中光合作用-呼吸平衡的生理生态和分子调节。
小麦对F. graminearum的反应导致广泛的生物过程的深刻和尖锐的重编程,包括能量相关功能和相关代谢。尽管这些影响已经通过蛋白质组学和转录组学研究在分子尺度上得到了彻底的描述,但仍需要进行表型研究来填补观察到的分子事件与疾病对生态生理过程的实际影响之间的空白。利用气体交换法,深入研究了两株侵袭性不同的禾本科F. graminearum菌株在侵染初期对穗部光合作用和呼吸相关过程的影响。此外,当使用相同的两种真菌菌株挑战植物时,还进行了基于rnaseq的参与光合作用,呼吸和气孔运动过程的基因表达谱分析。对枯萎病的响应,CO2同化和CO2扩散调节与转录组学数据相匹配,表明光合过程的改变和与症状发展无关的尖锐基因调控。相比之下,尽管生态生理特征清楚地表明,呼吸调节与禾谷酵母的感染过程一起发生,但所涉及的基因调控并没有完全被转录捕获。我们证明,将气体交换方法与转录组学相结合,在增强和深化我们对复杂生理调节的理解方面特别有效,提供了单一方法无法预测的独特和互补的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信