Glass half full: Non-invasive bladder biosensors for urinary volume monitoring in the neurogenic pediatric population.

IF 0.8 Q4 PEDIATRICS
Serena Ly, Eric A Kurzrock
{"title":"Glass half full: Non-invasive bladder biosensors for urinary volume monitoring in the neurogenic pediatric population.","authors":"Serena Ly, Eric A Kurzrock","doi":"10.1177/18758894241304358","DOIUrl":null,"url":null,"abstract":"<p><p>PurposeThe goal was to elucidate and present the current landscape of bladder biosensor technology for urinary volume monitoring in the management of neurogenic bladder. The need for such technology in managing neurogenic bladder in the pediatric population is discussed, as well as the challenges researchers currently face in advancing individual technologies.MethodsA literature review including 43 articles discussing bladder biosensor and related technology for continuous urinary volume monitoring was conducted. Articles ranged from original research studies to systematic reviews.ResultsVarious continuous bladder urine volume monitoring devices have been proposed and evaluated. These devices utilize principles of ultrasound, electrical impedance tomography, near infrared spectroscopy, pressure biosensor implantation, microwave radar, and frequency modulated continuous wave radar. While several studies have shown promise in correlating device measurements to bladder urinary volume changes, ultimately researchers have not been able to surmount the challenges of optimizing configuration of device components and the impacts of dynamic position, posture, body habitus, bladder location, and urine biochemical properties that demonstrate high interpersonal variability.ConclusionThe need for developing bladder biosensor technology to provide continuous urine volume monitoring in patients with neurogenic bladder remains great. Transitioning from a time-based clean intermittent catheterization approach to a volume-based approach would possibly improve neurogenic bladder patients' quality of life. While technologies face limitations that have stalled translation to clinical practice, there is potential to build upon past work to address current challenges and meet this ever-pressing need.</p>","PeriodicalId":16692,"journal":{"name":"Journal of pediatric rehabilitation medicine","volume":"17 4","pages":"420-425"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pediatric rehabilitation medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/18758894241304358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe goal was to elucidate and present the current landscape of bladder biosensor technology for urinary volume monitoring in the management of neurogenic bladder. The need for such technology in managing neurogenic bladder in the pediatric population is discussed, as well as the challenges researchers currently face in advancing individual technologies.MethodsA literature review including 43 articles discussing bladder biosensor and related technology for continuous urinary volume monitoring was conducted. Articles ranged from original research studies to systematic reviews.ResultsVarious continuous bladder urine volume monitoring devices have been proposed and evaluated. These devices utilize principles of ultrasound, electrical impedance tomography, near infrared spectroscopy, pressure biosensor implantation, microwave radar, and frequency modulated continuous wave radar. While several studies have shown promise in correlating device measurements to bladder urinary volume changes, ultimately researchers have not been able to surmount the challenges of optimizing configuration of device components and the impacts of dynamic position, posture, body habitus, bladder location, and urine biochemical properties that demonstrate high interpersonal variability.ConclusionThe need for developing bladder biosensor technology to provide continuous urine volume monitoring in patients with neurogenic bladder remains great. Transitioning from a time-based clean intermittent catheterization approach to a volume-based approach would possibly improve neurogenic bladder patients' quality of life. While technologies face limitations that have stalled translation to clinical practice, there is potential to build upon past work to address current challenges and meet this ever-pressing need.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
5.30%
发文量
139
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信