Unraveling the topological phase in Zintl semiconductors RbZn4X3(X = P, As) through band engineering.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Ramesh Kumar, Rajesh Kumar, Antik Sihi, Mukhtiyar Singh
{"title":"Unraveling the topological phase in Zintl semiconductors RbZn<sub>4</sub>X<sub>3</sub>(X = P, As) through band engineering.","authors":"Ramesh Kumar, Rajesh Kumar, Antik Sihi, Mukhtiyar Singh","doi":"10.1088/1361-648X/adc17e","DOIUrl":null,"url":null,"abstract":"<p><p>We report the topological phase transition (TPT) in compounds of relatively less explored Zintl family RbZn<sub>4</sub>X<sub>3</sub>(X = P, As) via<i>first-principles</i>calculation. These intermetallic compounds have already been experimentally synthesized in a<i>KCu<sub>4</sub>S<sub>3</sub>-type</i>tetragonal structure (P4/mmm) and reported to have a topologically trivial semimetallic nature with a direct band gap. We thoroughly studied the electronic structure, stability of RbZn<sub>4</sub>X<sub>3</sub>(X = P, As) and demonstrated the TPTs in these materials with external applied pressure and epitaxial strain. The dynamical and mechanical stabilities of these compounds are verified through phonon dispersion and Born stability criteria at ambient and TPT pressure/strain. A topologically non-trivial phase in RbZn<sub>4</sub>P<sub>3</sub>(RbZn<sub>4</sub>As<sub>3</sub>) is observed at 45 GPa (38 GPa) of hydrostatic pressure and 10% (8%) of epitaxial strain. This non-trivial phase is identified by band inversion between<i>Zn-s</i>and<i>P/As-p<sub>z</sub>orbitals</i>in the bulk band structure of these materials which is further confirmed using the surface density of states and Fermi arc contour in<i>(001)-plane</i>. The ℤ<sub>2</sub>topological invariants (<i>ν</i><sub>0</sub><i>; ν</i><sub>1</sub><i>ν</i><sub>2</sub><i>ν</i><sub>3</sub>) for these materials are calculated using the product of parities of all filled bands (Kane and Mele model) and the evolution of Wannier charge centers (Wilson loop method). The change in values of (<i>ν</i><sub>0</sub><i>; ν</i><sub>1</sub><i>ν</i><sub>2</sub><i>ν</i><sub>3</sub>) from (<i>0; 000</i>) to (<i>1; 000</i>), at the particular values of pressure and strain, is another signature of the TPT in these materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc17e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We report the topological phase transition (TPT) in compounds of relatively less explored Zintl family RbZn4X3(X = P, As) viafirst-principlescalculation. These intermetallic compounds have already been experimentally synthesized in aKCu4S3-typetetragonal structure (P4/mmm) and reported to have a topologically trivial semimetallic nature with a direct band gap. We thoroughly studied the electronic structure, stability of RbZn4X3(X = P, As) and demonstrated the TPTs in these materials with external applied pressure and epitaxial strain. The dynamical and mechanical stabilities of these compounds are verified through phonon dispersion and Born stability criteria at ambient and TPT pressure/strain. A topologically non-trivial phase in RbZn4P3(RbZn4As3) is observed at 45 GPa (38 GPa) of hydrostatic pressure and 10% (8%) of epitaxial strain. This non-trivial phase is identified by band inversion betweenZn-sandP/As-pzorbitalsin the bulk band structure of these materials which is further confirmed using the surface density of states and Fermi arc contour in(001)-plane. The ℤ2topological invariants (ν0; ν1ν2ν3) for these materials are calculated using the product of parities of all filled bands (Kane and Mele model) and the evolution of Wannier charge centers (Wilson loop method). The change in values of (ν0; ν1ν2ν3) from (0; 000) to (1; 000), at the particular values of pressure and strain, is another signature of the TPT in these materials.

利用能带工程揭示Zintl半导体RbZn4X3 (X=P, As)的拓扑相。
我们通过第一性原理计算报道了相对较少探索的Zintl族RbZn4X3 (X=P, As)化合物的拓扑相变。这些金属间化合物已经在实验中以kcu4s3型四方结构(P4/mmm)合成,并且据报道具有拓扑平凡的半金属性质,具有直接带隙。我们深入研究了RbZn4X3 (X=P, As)的电子结构和稳定性,并证明了这些材料在外加压力和外延应变下的拓扑相变。通过声子色散在所有拓扑相变压力和应变值下验证了这些化合物的动态稳定性。在45 GPa (38 GPa)的静水压力和10%(8%)的外延应变下,RbZn4P3 (RbZn4As3)中出现了拓扑非平凡相。在这些材料的体带结构中,通过Zn-s轨道和P/ as - pzz轨道之间的能带反转,进一步通过态的表面密度和(001)平面上的费米弧轮廓线证实了这一非trivial相。2拓扑不变量(ν0;ν1ν2ν3)利用所有填充能带的奇偶积(Kane和Mele模型)和万尼尔电荷中心的演化(Wilson环法)计算了这些材料的ν1ν2ν3)。(ν0;ν1ν2ν3)从(0;000)到(1000),在特定的压力和应变值下,是这些材料中拓扑相变的另一个特征。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信