Time-Dependent Regulation of Sleep-Wakefulness and Electroencephalographic Characteristics by Spontaneous Running in Male Mice.

IF 3.4 3区 医学 Q2 CLINICAL NEUROLOGY
Wufang Zhou, Jialin Zhou, Qianyu Lu, Long Wang, Yutao Liang, Ye Xing, Zheng Zhang, Jinshan Yang, Wenxue Zhao, Xin Li, Guangsen Shi
{"title":"Time-Dependent Regulation of Sleep-Wakefulness and Electroencephalographic Characteristics by Spontaneous Running in Male Mice.","authors":"Wufang Zhou, Jialin Zhou, Qianyu Lu, Long Wang, Yutao Liang, Ye Xing, Zheng Zhang, Jinshan Yang, Wenxue Zhao, Xin Li, Guangsen Shi","doi":"10.1111/jsr.70023","DOIUrl":null,"url":null,"abstract":"<p><p>The relationship between physical activity and sleep quality is a critical area of investigation, given the importance of both behaviours for health and disease. Despite the common use of running wheels to assess circadian rhythms and exercise, their impact on sleep has not been thoroughly explored. Here, we present a detailed analysis of how voluntary running affected sleep/wakefulness duration, architecture and electrophysiological characteristics in mice. Sequential electroencephalogram (EEG) assessments revealed that voluntary running elicits a progressive alteration in sleep/wake configurations, including a reduction in overall daily sleep time and an enhancement in sleep/wakefulness consolidation. These modifications exhibited a temporal association with the intensity of running activities. The observed changes in sleep/wakefulness duration and architecture partially persist even after the discontinuation of running. Spontaneous running also gradually changed the amplitude and/or frequency of EEG theta power not only during the running phase but also in rapid eye movement sleep (REMS). In vivo endoscopic calcium imaging in freely behaving mice revealed that running and REMS were accompanied by the activation of largely shared yet distinctive neuronal cohorts within the hippocampal CA1 region, concomitant with EEG theta oscillations during both behaviours. These findings highlight the dynamic nature of sleep/wakefulness regulation in response to voluntary exercise and suggest that physical activity played a pivotal role in modulating sleep need and the daily balance between sleep and wakefulness.</p>","PeriodicalId":17057,"journal":{"name":"Journal of Sleep Research","volume":" ","pages":"e70023"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sleep Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jsr.70023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The relationship between physical activity and sleep quality is a critical area of investigation, given the importance of both behaviours for health and disease. Despite the common use of running wheels to assess circadian rhythms and exercise, their impact on sleep has not been thoroughly explored. Here, we present a detailed analysis of how voluntary running affected sleep/wakefulness duration, architecture and electrophysiological characteristics in mice. Sequential electroencephalogram (EEG) assessments revealed that voluntary running elicits a progressive alteration in sleep/wake configurations, including a reduction in overall daily sleep time and an enhancement in sleep/wakefulness consolidation. These modifications exhibited a temporal association with the intensity of running activities. The observed changes in sleep/wakefulness duration and architecture partially persist even after the discontinuation of running. Spontaneous running also gradually changed the amplitude and/or frequency of EEG theta power not only during the running phase but also in rapid eye movement sleep (REMS). In vivo endoscopic calcium imaging in freely behaving mice revealed that running and REMS were accompanied by the activation of largely shared yet distinctive neuronal cohorts within the hippocampal CA1 region, concomitant with EEG theta oscillations during both behaviours. These findings highlight the dynamic nature of sleep/wakefulness regulation in response to voluntary exercise and suggest that physical activity played a pivotal role in modulating sleep need and the daily balance between sleep and wakefulness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sleep Research
Journal of Sleep Research 医学-临床神经学
CiteScore
9.00
自引率
6.80%
发文量
234
审稿时长
6-12 weeks
期刊介绍: The Journal of Sleep Research is dedicated to basic and clinical sleep research. The Journal publishes original research papers and invited reviews in all areas of sleep research (including biological rhythms). The Journal aims to promote the exchange of ideas between basic and clinical sleep researchers coming from a wide range of backgrounds and disciplines. The Journal will achieve this by publishing papers which use multidisciplinary and novel approaches to answer important questions about sleep, as well as its disorders and the treatment thereof.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信