Stem cells derived exosome laden oxygen generating hydrogel composites with good electrical conductivity for the tissue-repairing process of post-myocardial infarction.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhaoyan Xu, Wanzi Hong, Yuanxi Mo, Fen Shu, Yaoxin Liu, Yuqi Cheng, Ning Tan, Lei Jiang
{"title":"Stem cells derived exosome laden oxygen generating hydrogel composites with good electrical conductivity for the tissue-repairing process of post-myocardial infarction.","authors":"Zhaoyan Xu, Wanzi Hong, Yuanxi Mo, Fen Shu, Yaoxin Liu, Yuqi Cheng, Ning Tan, Lei Jiang","doi":"10.1186/s12951-025-03289-y","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) destroys heart cells by disrupting the oxygen supply. Improving oxygen delivery to the injured area may avoid cell death and regenerate the heart. We present the creation of oxygen-producing injectable bio-macromolecular hydrogels using catalase (CAT) loaded alginate (Alg) and fibrin (Fib) incorporated with the Mesenchymal stem cells (MSCs) derived exosomes (Exo). The composite hydrogel additionally incorporates electrical stimulating qualities from gold nanoparticles (AuNPs). In vitro experiments showed that this composite hydrogel (Exo/Hydro/AuNPs/CAT) exhibits electrical conductivity similar to an actual heart and effectively releases CAT. The O<sub>2-</sub>generating hydrogel released oxygen for almost 5 days under hypoxia conditions. We showed that after 7 days of in vitro cell culture, produces the same paracrine factors as rat neonatal cardiomyocytes (RNCs), rat cardiac fibroblasts (RCFs), and Human Umbilical Vein Endothelial Cells (HUVECs), imitating capillary architecture and function. Our work demonstrated that the injectable conductive hydrogel loaded with CAT and AuNPs reduced left ventricular remodeling and myocardial dysfunction in rats after MI. Exo/Hydro/AuNPs/CAT boosted infarct margin angiogenesis, decreased cell apoptosis, and necrosis, and elevated Connexm43 (Cx43) expression. The therapeutic benefits and the ease of production of oxygen make this bioactive injectable conductive hydrogel an effective therapeutic agent for MI.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"213"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03289-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute myocardial infarction (AMI) destroys heart cells by disrupting the oxygen supply. Improving oxygen delivery to the injured area may avoid cell death and regenerate the heart. We present the creation of oxygen-producing injectable bio-macromolecular hydrogels using catalase (CAT) loaded alginate (Alg) and fibrin (Fib) incorporated with the Mesenchymal stem cells (MSCs) derived exosomes (Exo). The composite hydrogel additionally incorporates electrical stimulating qualities from gold nanoparticles (AuNPs). In vitro experiments showed that this composite hydrogel (Exo/Hydro/AuNPs/CAT) exhibits electrical conductivity similar to an actual heart and effectively releases CAT. The O2-generating hydrogel released oxygen for almost 5 days under hypoxia conditions. We showed that after 7 days of in vitro cell culture, produces the same paracrine factors as rat neonatal cardiomyocytes (RNCs), rat cardiac fibroblasts (RCFs), and Human Umbilical Vein Endothelial Cells (HUVECs), imitating capillary architecture and function. Our work demonstrated that the injectable conductive hydrogel loaded with CAT and AuNPs reduced left ventricular remodeling and myocardial dysfunction in rats after MI. Exo/Hydro/AuNPs/CAT boosted infarct margin angiogenesis, decreased cell apoptosis, and necrosis, and elevated Connexm43 (Cx43) expression. The therapeutic benefits and the ease of production of oxygen make this bioactive injectable conductive hydrogel an effective therapeutic agent for MI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信