Effects of Zofenopril and Thymoquinone in Cyclophosphamide-Induced Urotoxicity and Nephrotoxicity in Rats; The Value of Their Anti-Inflammatory and Antioxidant Properties.

IF 4.2 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-03-12 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S500375
Neveen Nawzad Mahmood, Ban Mousa Rashid, Sakar Karem Abdulla, Bushra Hassan Marouf, Karmand Salih Hamaamin, Hemn Hassan Othman
{"title":"Effects of Zofenopril and Thymoquinone in Cyclophosphamide-Induced Urotoxicity and Nephrotoxicity in Rats; The Value of Their Anti-Inflammatory and Antioxidant Properties.","authors":"Neveen Nawzad Mahmood, Ban Mousa Rashid, Sakar Karem Abdulla, Bushra Hassan Marouf, Karmand Salih Hamaamin, Hemn Hassan Othman","doi":"10.2147/JIR.S500375","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study aimed to investigate whether zofenopril (ZOF), thymoquinone (TQ), or their co-administration effectively ameliorates urotoxicity and nephrotoxicity following cyclophosphamide (CPH) treatment.</p><p><strong>Methods: </strong>A total of 48 Wister Albino female rats were divided into six groups each of eight rats; negative control (NC), positive control (PC), mesna (MS), ZOF, TQ, and ZOF+TQ groups. Normal saline, mesna, ZOF-15mg/kg, TQ-80mg/kg, and their combination were given orally for 19 days to the groups NC, MS, ZOF, TQ, and ZOF+TQ respectively. On the 17<sup>th</sup> day, a single dose of CPH 200 mg/kg was given intraperitoneally for all the groups except the NC group. Urine was collected over 24 hours before animal scarification for urinalysis. After scarification, blood, and kidney tissue were obtained for assessment of conventional kidney function parameters, novel kidney injury biomarkers, pro-inflammatory cytokines, oxidative status, complete blood count (CBC), and histopathological examination.</p><p><strong>Results: </strong>CPH disturbed the urinary excretion of urea, creatinine, and protein, and significantly elevated novel biomarkers for kidney injury including cystatin-C (Cys-C) (p=0.019) and markedly kidney injury molecule-1 (KIM-1) (p=0.27), the semiquantitative measurement of hematuria revealed significant elevation of hematuria score (p=0.0002), urine pus and protein (p=0.0005). Additionally, CBC-derived inflammatory biomarkers including neutrophil-lymphocyte ratio (NLR) (p=0.001), neutrophil-monocyte ratio (NMR) (p=0.0004), pro-inflammatory cytokine interleukin (IL)-6 (p=0.016) and tumor necrosis factor (TNF)-α (p<=0.007), total antioxidant capacity (TAC) (p<0.0001) were significantly increased. Evidence of obvious histopathological structural alteration was noticed in kidney tissue and bladder urothelium in CPH-treated animals. ZOF, TQ, and their co-treatment significantly prevented these deleterious effects associated with CPH treatment.</p><p><strong>Conclusion: </strong>This study demonstrated that ZOF and TQ provided uroprotective and nephroprotective effects against CPH-induced nephrotoxicity by reducing kidney injury biomarkers, and CBC-derived inflammatory markers, restoring antioxidant capacity, and improving histopathological outcomes. The suggested mechanism involves the anti-inflammatory and antioxidant activity of TQ and the sulfhydryl-angiotensin converting enzyme inhibitor ZOF.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"3657-3676"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S500375","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The study aimed to investigate whether zofenopril (ZOF), thymoquinone (TQ), or their co-administration effectively ameliorates urotoxicity and nephrotoxicity following cyclophosphamide (CPH) treatment.

Methods: A total of 48 Wister Albino female rats were divided into six groups each of eight rats; negative control (NC), positive control (PC), mesna (MS), ZOF, TQ, and ZOF+TQ groups. Normal saline, mesna, ZOF-15mg/kg, TQ-80mg/kg, and their combination were given orally for 19 days to the groups NC, MS, ZOF, TQ, and ZOF+TQ respectively. On the 17th day, a single dose of CPH 200 mg/kg was given intraperitoneally for all the groups except the NC group. Urine was collected over 24 hours before animal scarification for urinalysis. After scarification, blood, and kidney tissue were obtained for assessment of conventional kidney function parameters, novel kidney injury biomarkers, pro-inflammatory cytokines, oxidative status, complete blood count (CBC), and histopathological examination.

Results: CPH disturbed the urinary excretion of urea, creatinine, and protein, and significantly elevated novel biomarkers for kidney injury including cystatin-C (Cys-C) (p=0.019) and markedly kidney injury molecule-1 (KIM-1) (p=0.27), the semiquantitative measurement of hematuria revealed significant elevation of hematuria score (p=0.0002), urine pus and protein (p=0.0005). Additionally, CBC-derived inflammatory biomarkers including neutrophil-lymphocyte ratio (NLR) (p=0.001), neutrophil-monocyte ratio (NMR) (p=0.0004), pro-inflammatory cytokine interleukin (IL)-6 (p=0.016) and tumor necrosis factor (TNF)-α (p<=0.007), total antioxidant capacity (TAC) (p<0.0001) were significantly increased. Evidence of obvious histopathological structural alteration was noticed in kidney tissue and bladder urothelium in CPH-treated animals. ZOF, TQ, and their co-treatment significantly prevented these deleterious effects associated with CPH treatment.

Conclusion: This study demonstrated that ZOF and TQ provided uroprotective and nephroprotective effects against CPH-induced nephrotoxicity by reducing kidney injury biomarkers, and CBC-derived inflammatory markers, restoring antioxidant capacity, and improving histopathological outcomes. The suggested mechanism involves the anti-inflammatory and antioxidant activity of TQ and the sulfhydryl-angiotensin converting enzyme inhibitor ZOF.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信