Transcriptomic correlates of nutritional manipulation in a facultatively social bee.

IF 2.8 2区 生物学 Q2 BIOLOGY
Jesse L Huisken, Sandra M Rehan
{"title":"Transcriptomic correlates of nutritional manipulation in a facultatively social bee.","authors":"Jesse L Huisken, Sandra M Rehan","doi":"10.1242/jeb.250024","DOIUrl":null,"url":null,"abstract":"<p><p>Subsocial behaviour in insects consists of extended parental care and may set the stage for the evolution of cooperation through manipulation of offspring. Manipulation of brood nutrition may produce differences in developmental or adult gene regulation, but it also produces smaller offspring which may be coerced into cooperation. The eastern small carpenter bee Ceratina calcarata frequently produces a smaller under-provisioned dwarf eldest daughter (DED). These DEDs are the only offspring to forage and feed siblings. To test if nutritional manipulation of DEDs alters gene expression, inducing cooperative sibling care, we conducted a transcriptomic study, using whole heads, to assess differences in brain gene expression among naturally provisioned regular daughters and DEDs, experimentally under-provisioned regular daughters, and experimentally supplemented DEDs, prior to social interaction. Differences in gene expression were minimal among groups but were dramatic as a function of body size as a continuous variable, suggesting that differences in gene expression are more associated with absolute differences in body size, not discrete castes, or order of eclosion. Enrichment for GO terms related to hormonal regulation in small bees points to hormonal regulation of transcription factors in behavioural differences that emerge in DEDs. Subordinate behaviours thus likely involve experience and social environment, though other developmental mechanisms, such as parental care and later adult social interactions after eclosion may act on differences in body size and gene expression to produce the distinct behaviour of DEDs.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.250024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Subsocial behaviour in insects consists of extended parental care and may set the stage for the evolution of cooperation through manipulation of offspring. Manipulation of brood nutrition may produce differences in developmental or adult gene regulation, but it also produces smaller offspring which may be coerced into cooperation. The eastern small carpenter bee Ceratina calcarata frequently produces a smaller under-provisioned dwarf eldest daughter (DED). These DEDs are the only offspring to forage and feed siblings. To test if nutritional manipulation of DEDs alters gene expression, inducing cooperative sibling care, we conducted a transcriptomic study, using whole heads, to assess differences in brain gene expression among naturally provisioned regular daughters and DEDs, experimentally under-provisioned regular daughters, and experimentally supplemented DEDs, prior to social interaction. Differences in gene expression were minimal among groups but were dramatic as a function of body size as a continuous variable, suggesting that differences in gene expression are more associated with absolute differences in body size, not discrete castes, or order of eclosion. Enrichment for GO terms related to hormonal regulation in small bees points to hormonal regulation of transcription factors in behavioural differences that emerge in DEDs. Subordinate behaviours thus likely involve experience and social environment, though other developmental mechanisms, such as parental care and later adult social interactions after eclosion may act on differences in body size and gene expression to produce the distinct behaviour of DEDs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信