Shihui Shen, Qiansen Zhang, Yuhan Wang, Hui Chen, Shuangming Gong, Yun Liu, Conghao Gai, Hansen Chen, Enhao Zhu, Bo Yang, Lin Liu, Siyuan Cao, Mengting Zhao, Wenjie Ren, Mengjuan Li, Zhuoya Peng, Lu Zhang, Shaoying Zhang, Juwen Shen, Bianhong Zhang, Patrick Kh Lee, Kun Li, Lei Li, Huaiyu Yang
{"title":"Targeting ubiquitin-independent proteasome with small molecule increases susceptibility in pan-KRAS-mutant cancer models.","authors":"Shihui Shen, Qiansen Zhang, Yuhan Wang, Hui Chen, Shuangming Gong, Yun Liu, Conghao Gai, Hansen Chen, Enhao Zhu, Bo Yang, Lin Liu, Siyuan Cao, Mengting Zhao, Wenjie Ren, Mengjuan Li, Zhuoya Peng, Lu Zhang, Shaoying Zhang, Juwen Shen, Bianhong Zhang, Patrick Kh Lee, Kun Li, Lei Li, Huaiyu Yang","doi":"10.1172/JCI185278","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances in the development of direct KRAS inhibitors, KRAS-mutant cancers continue to exhibit resistance to the currently available therapies. Here, we identified REGγ as a mutant KRAS-associated factor that enhanced REGγ transcription through the KRAS intermediate NRF2, suggesting that the REGγ-proteasome is a potential target for pan-KRAS inhibitor development. We elucidated a mechanism involving the KRAS/NRF2/REGγ regulatory axis, which links activated KRAS to the ATP- and ubiquitin-independent proteasome. We subsequently developed RLY01, a REGγ-proteasome inhibitor that effectively suppressed tumor growth in KRAS-mutant cancer models and lung cancer organoids. Notably, the combination of RLY01 and the KRASG12C inhibitor AMG510 exhibited enhanced antitumor efficacy in KRASG12C cancer cells. Collectively, our data support the hypothesis that KRAS mutations enhance the capacity of the REGγ-proteasome by increasing REGγ expression, highlighting the potential of ubiquitin-independent proteasome inhibition as a therapeutic approach for pan-KRAS-mutant cancers.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":"135 6","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI185278","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite advances in the development of direct KRAS inhibitors, KRAS-mutant cancers continue to exhibit resistance to the currently available therapies. Here, we identified REGγ as a mutant KRAS-associated factor that enhanced REGγ transcription through the KRAS intermediate NRF2, suggesting that the REGγ-proteasome is a potential target for pan-KRAS inhibitor development. We elucidated a mechanism involving the KRAS/NRF2/REGγ regulatory axis, which links activated KRAS to the ATP- and ubiquitin-independent proteasome. We subsequently developed RLY01, a REGγ-proteasome inhibitor that effectively suppressed tumor growth in KRAS-mutant cancer models and lung cancer organoids. Notably, the combination of RLY01 and the KRASG12C inhibitor AMG510 exhibited enhanced antitumor efficacy in KRASG12C cancer cells. Collectively, our data support the hypothesis that KRAS mutations enhance the capacity of the REGγ-proteasome by increasing REGγ expression, highlighting the potential of ubiquitin-independent proteasome inhibition as a therapeutic approach for pan-KRAS-mutant cancers.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.